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Abstract

When heterogeneous individuals form groups in order to carry out productive activities, equal
sharing of surplus implies to loss of efficiency due the trade-off between size or homogeneity
each coalition faces. Such loss in efficiency can be mitigated by deviating from equal shar-
ing, e.g., the proportional sharing rule. We show that, under proportional sharing rule, there
is a unique stable and efficient coalition structure, which is the grand coalition. We then find
conditions under which smaller coalitions can form a constrained efficient and stable coalition
structure. We show that such exogenous bounds on coalition size can be endogenized by intro-
ducing individualized expansion costs. When such costs implies proportional cost sharing, there
is an efficient and stable structure. Finally, we consider a convex combination of the equal and
proportional sharing rules, under which individual optimum size may vary non-monotonically
with respect to ability.

Keywords: Coalition formation, Profit sharing rules.
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Chapter 1

Introduction

In many situations, individuals decide to form groups in order to exploit the benefits from co-

operative works. When a group is formed and the group members together produce a ‘surplus’,

they must also decide how to divide the surplus among the participants. The ‘surplus sharing

rule’ can be exogenously given or it may be endogenously determined. When individuals intend

to form coalitions, an exogenously given sharing rule crucially influences an individual’s deci-

sion about which group to belong to. This in turn determines the formation of stable coalitions.

In the present work, we focus on fixed surplus sharing rules, and their role in group formation.

The equal sharing rule is a popular way to divide surplus among group members even

when individuals contribute unequally. Such rules are simple to design and implement. They

arguably reduce the organizational costs of designing more complex reward mechanisms and

may prevent rent-seeking behavior. Equal sharing rules also obeys the criterion of fairness and

respond to social conventions. In many academic disciplines, coauthors equally share credits

even if they have asymmetric skill levels. Equal division of earnings often apply to partners of

law firms or to a group of fishermen. Farrell & Scotchmer (1988) analyze how equal sharing

rules affect stability and efficiency of coalitions when individuals are heterogeneous with respect

to their productivities. They find that the game of coalition formation under an equal sharing rule

leads to a unique equilibrium [stable] partition of the players into coalitions. A stable partition
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is defined as the partition structure where no new coalition of any size could form, and make all

its members strictly better off.

However, the equilibrium partition under the equal sharing rule is inefficient because it

induces individuals to face a trade-off between ability and size. On the one hand, larger groups

produce more surplus, on the other, forming groups with less able individuals implies lower sur-

plus. In particular, because the sharing rule force group members to share equally the coalitional

gains, having less able partners is equivalent to subsidizing them. Differences in ability of the

individuals cause the average ability in a group to decrease with the size of the group. Such loss

of efficiency that emerges from the equal sharing of surplus among heterogeneous group mem-

bers can be mitigated by using a different sharing rule. Thus, the main objective of our work

is to analyze surplus sharing rules, which are distinct from the equal sharing rule, in enhancing

efficiency of coalition formation

We first consider coalition formation with heterogeneous agents under the proportional

sharing rule. This rule ameliorates the loss of efficiency that emerges under the equal sharing

rule. However, the unique efficient allocation is the grand coalition. In a bid to achieve a stable

coalition structure in which smaller groups may be formed, we artificially restrict the coalitions

to a limit size. The stable structure turns out to be constrained efficient. We next introduce costs

of expanding the groups, which allows us to achieve bounded coalitions endogenously. Finally,

we analyze stable partitions by departing from both the equal and proportional sharing rules in

that we consider a convex combination of these two rules. In this case, we find that the optimal

choice of group size of the individuals is in general non-monotonic in ability.

1.1 Related literature

Farrell & Scotchmer (1988) analyze the role of equal surplus sharing on the formation of coali-

tions among heterogeneous agents. They analyze conditions under which a unique stable par-

tition exists. In a stable coalition structure, groups are consecutive, i.e., all the members of a
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group have abilities in a given interval. Moreover, when ability is uniformly distributed, more

productive individuals form larger groups. However, as we have explained earlier, equal sharing

of surplus among heterogeneous individuals lead to inefficiency. They show that the groups in

the core partition tend to be inefficiently small due to the agents’ preferences for homogene-

ity. The present work builds on Farrell & Scotchmer (1988) in what we consider a non-equal

sharing rule (in particular, the proportional sharing rule) in a bid to restore efficiency. Under

proportional sharing rule, the grand coalition is the unique stable coalition structure. In our

framework, each group can be very heterogeneous as no individual faces a trade-off between

size and homogeneity.

Pycia (2012) analyzes a more general model of sharing rules and characterizes the rules

that induce stable partitions (coalition structures). In particular, he finds that a necessary and

sufficient condition for stability is that the rule must induce pairwise aligned preferences over

coalitions for each level of output. Pairwise alignment condition means that any two agents

rank coalitions that contain both of them in the same way. Both the equal and proportional

sharing rules meet this condition. In order to study qualitative properties of stable coalition

structures induced by such sharing rules, Pycia (2012) shows that a pairwise-aligned rule can

be represented by a profile of agents’ bargaining functions. In a stable structure, coalitions are

formed by agents with similar bargaining functions. However, this induces a loss of efficiency

since some beneficial coalitions may not form. This setting also allows one to compare stable

coalition structures that are formed with different stability-inducing sharing rules.

We consider two separate cases—the first where the set of agents is finite, and then, a

continuum. The stable or ‘core’ allocation of a coalitional game with continuum of agents

resembles the concept of f -core analyzed by Kaneko & Wooders (1982, 1986). The broad idea

behind the concept of finite-core (f -core) is that, in a continuum economy, each individual has

measure zero; however, the action of each individual may have non-null impact on the overall

game, and thus such individuals can be, loosely speaking, considered to be of positive measure.

We later focus on endogenous size restrictions by introducing costs of forming coalitions, which
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is increasing in the group size.

The present work is also related to the literature on hedonic games (e.g. Banerjee, Konishi,

& Sönmez, 2001; Bogomolnaia & Jackson, 2002). Hedonic games are the games of coalition

formation where the payoff accruing to each member of a coalition is completely determined

by the characteristics of the members of the she belongs to. With heterogenous individuals, any

fixed sharing rule means that the payoff to any agent depends only on the characteristics of her

partners in the group, and hence, gives rise to a hedonic coalitional game. In fact Banerjee,

Konishi, & Sönmez (2001) introduce the top-coalition property, which is a weakening of the

common ranking property of Farrell & Scotchmer (1988), which is used to guarantee the exis-

tence of a core partition.1 In our model under the proportional sharing rule, such properties are

not required as the grand coalition is the only efficient coalition, which always exists.

1.2 Review of Farrell and Scotchmer (1988)

In this section, we provide a brief review of the most important aspects of the model of Farrell &

Scotchmer (1988). Each agent i posses a level of ability or talent xi, which is an individualized

productive asset. The payoff of a coalition or group S is the sum of the abilities of all its

members,
∑

S xi multiplied by a factor t(|S|) that reflects the advantages of scale economies.

This factor depends only on the size but not on the composition of the coalition S, and is a

strictly increasing function. In other words, productive complementarities are anonymous.

Under equal sharing rule, the members of a coalition divide equally the aggregate surplus

t(|S|)
∑

S xi among themselves. Therefore, the individual payoff in any coalition S is simply

a(|S|) =
t(|S|)

∑
S xi

|S|
,

1 The common ranking property requires that there is a linear ordering over all coalitions which coincides with any
player’s preference ordering over coalitions to which she belongs. On the other hand, the top-coalition property
requires that for any non-empty subset S of players, one can find a sub-coalition T of S such that all members of
T prefer T to any other coalition that consists of some or all members of S.
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which is the average surplus of the group. Notice that, because the individuals differ in ability,

their contributions will decrease when ability decreases, this means that enlarging a group will

eventually leads to lower marginal contributions, and therefore, to lower individual payoff as

gains must be divided equally. Formally, t(|S|)/|S| is strictly decreasing beyond a critical group

size.

Farrell & Scotchmer (1988) proves the existence and uniqueness of a stable coalition struc-

ture, which relies on the following argument. Assume a function u(S) that is a monotonic trans-

formation of a(|S|). Clearly, ui(S) = u(S) for all i ∈ S and any coalition S. Thus, the function

u(S) allows each individual to rank coalitions. Then, the formation of the stable (or core) par-

tition goes as follows: first, the best coalition (the one that has a higher evaluation under u(·))

forms, then this process repeats for the rest of the agents to form the second best coalition, and

so on, until the last coalition forms with the leftovers. Notice that this coalition is stable be-

cause there is no other coalition that blocks it (i.e., no new coalition can form and makes all it

members better off). No member of the best coalition would want to join any other coalition,

neither would accept any other member in his group; this argument repeats with the second best

coalition and so on. This construction of the equilibrium allows us to know which partitions

will form. Furthermore, this partition is generically unique because u(S) or any monotonic

transformation of it preserves the same common ranking property.

Next, the authors consider a continuum version of the model where abilities x are dis-

tributed according to the distribution function F (x) on the interval [0, M ]. The payment of each

individual in the coalition S is thus given by:

a(|S|) =
t(|S|)
|S|

∫
S

xdF (x).

One important property of the equilibrium is the consecutiveness of its coalitions, which comes

out from the way a stable partition is constructed—the best coalition forms with the most able

individuals, down to some cutoff. Then, this process repeats itself which chooses the most able
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individuals (down to some cutoff) from those who are left to form the second best coalition, and

so on. Therefore, each coalition consists of individuals with abilities lying in some interval.

Another characteristic of the equilibrium is that each individual gets at least as much utility

as a less able individual: indeed, if it were not the case, the individual could take the place of

the less able and improve both her utility and the utility of her new group. However, this would

contradict the notion of stability. Finally, when the distribution of abilities is uniform, the size

of equilibrium coalitions increases with ability, which means that the coalitions of more able

individuals are larger. This result follows from the fact that the difference in ability between the

least able member and the mean of abilities becomes proportionally less important as the mean

increases. In other words, the contribution of the least able member of a high ability coalition is

higher, which encourages this coalition to expand.
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Chapter 2

The model

2.1 The proportional sharing rule

Consider a finite set of agentsN := {1, . . . , N}. An individual i ∈ N has ability xi. According

to the proportional sharing rule, the payoff to an agent i is given by:

ui(|S|) = t(|S|)xi,

where t : N −→ R+ is a strictly increasing function, and |S| is the size of the coalition that

agent i belongs to. The aggregate surplus of coalition S is equal to t(|S|)
∑

i∈S xi. Therefore,

the aggregate surplus of a given coalition is divided among its members in a way that each agent

receives a pay proportional to her productivity.

A coalition structure is a partition P of the set of agents N . From now on, we shall say

an individual is better off under the partition P than under the partition Q if she gets higher pay

under the former relative to the latter. Likewise, we shall refer as worse off for the opposite

situation.

Definition 2.1. Given two partitions P andQ, we define the improvement rate IP,Q of P respect

to Q as the number of individuals that are better off under P minus the number of individuals
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that are worse off.

Let us now introduce the notion of blocking by a single or a group of individuals.

Definition 2.2. Partition P weakly blocks partition Q if and only if improvement rate of P

respect to Q, IP,Q, is non negative. We say P blocks Q if and only if P weakly blocks Q but Q

does not weakly block P . In other words, if IP,Q is strictly positive.

The weak blocking relation is a preorder, i.e., it is reflexive and transitive. The [strong]

blocking relation is derived from the weak notion of blocking. Note that the case where there is

a coalition that guarantees higher payoffs for some individuals without reducing the pays of any

of its member is a particular case of the previous definition.

Definition 2.3. We say a partition P is stable if there is no other partition that blocks it. In

this sense, a stable partition is a maximal of the set of partitions, induced by the weak blocking

relation.

2.2 Efficiency with finitely many agents

Note that, under both the proportional and equal sharing rules, aggregate payoffs are maximized

when the grand coalition (which is the trivial partition) is formed. To see this, consider any

partition P = {P1, . . . , Ph} of N . Then, the total payoffs under this partition are strictly lower

than that under the grand coalition:

t(|P1|)
∑
P1

xi + . . .+ t(|Ph|)
∑
Ph

xi < t(N)
∑
P1

xi + . . .+ t(N)
∑
Ph

xi = t(N)
N∑
i=1

xi.

Proposition 2.1. The grand coalition is the unique stable and efficient partition under the pro-

portional sharing rule.

Unlike the equal sharing rule, under the proportional rule, the grand coalition maximizes

individual payoffs because each individual i ∈ N obtains t(N)xi which is higher than what
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would be her payoff in other coalition structure, i.e., t(|Ph|)xi for Ph ∈ P . Thus, the grand

coalition is the unique stable partition because there is no other partition that makes an agent

better off. Moreover, the grand coalition is efficient because it maximizes the aggregate payoffs.

As we have mentioned earlier, under the equal sharing rule, there exists a generically unique

stable partition S = {S1, . . . , Sj} which consists of coalitions of inefficient sizes because the

aggregate payoffs achieved are lower than that under the grand coalition.

2.3 Stability with bounded coalitions

In this section, we shall analyze situations where there are limits to the formation of the grand

coalition. We consider two cases. First, we impose exogenous restrictions on the size of each

coalition, and analyze the efficiency properties of a stable coalition structure. Second, we endo-

genize such size restrictions.

2.3.1 Exogenous bounds on coalition size

Let us consider a coalition formation game in which the size or cardinality of each group is

bounded above by a positive real number k. Formally,

Definition 2.4. We say a partition P is k-feasible if |Ph| ≤ k for all Ph ∈ P .

Further, we say that a k-feasible partition P blocks a k-feasible partition Q if the set of

individuals that are better off in partition P is larger than the set of the individuals that are

worse off (or, equivalently, if the improvement index is strictly positive). Thus, a partition is

k-stable if there is no other k-feasible partition that blocks it. The following result shows that

under the proportional sharing rule, the agents get to exploit the benefits of scale economies

because they do not face the trade-off between the size of their coalition and homogeneity (as it

occurs under the equal sharing rule). The k-stable partitions under the proportional sharing rule
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are constrained efficient in the sense that they allow the individuals to exploit scale economies,

given the feasibility condition.

Proposition 2.2. A partition is k-stable, which we denote by Pk∗ , if and only if it has at most

one group of size strictly less than k.

Proof. First, note that a Pk∗ is stable because no coalition of size k can accept more individuals

as its members, and any deviation from a partition of size k to that of size less than k would

have, at most, an improvement index zero.

For the other implication, we proceed by contradiction. Suppose P is a k-stable partition

and that it has two coalitions Ph and Pl, such that |Ph|, |Pl| < k. We show that the payoffs

accruing to the individuals of both these coalitions are higher when they form a new coalition

Ph ∪ Pl. We have the following two possible cases:

Case 1: If |Ph|+|Pl| ≤ k, each individual i in the coalition Ph obtains the payment t(|Ph|)xi, and

each individual j in the coalition Pl receives t(|Pl|)xj . Clearly, both coalitions can be merged

into one coalition, Ph∪Pl without violating the k-feasibility condition. Moreover, each member

i of the new coalition, Ph ∪ Pl would receive the payment t(|Ph| + |Pl|)xi, strictly higher than

what he would have obtained by being in either Ph or Pl. Also, notice that by doing so, no

individual will be worse off. This is, the partition P ′ obtained from P by merging the coalitions

Ph and Pl together would block P , since it makes k individuals better off without reducing the

payments of any other individual. Therefore, P is not a k-stable partition.

Case 2: Let |Ph| + |Pl| > k, and suppose, without loss of generality, that |Ph| > |Pl|. If any

k − |Ph| individuals leave coalition Pl to join Ph, then k individuals would be better off while

only |Pl| − (k − |Ph|) = |Ph| + |Pl| − k < k would be worse off. That is, the partition P ′

generated from P by integrating coalitions Ph and Pl into one coalition of size k and another

coalition of size |Ph| + |Pl| − k, is feasible and improves the payments of k individuals while

reducing the payments of less than k. Therefore, P is not k-stable, since it is blocked by P ′.

Corollary 2.1. If q, r ∈ N are respectively the quotient and the reminder of the division of N
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by k, a k-stable partition (or, equivalently, a Pk∗ partition) has q coalitions of size k and one of

size r.

The above is a consequence of the previous proposition. Because there is at most one

coalition of size less than k in a k-stable partition, the rest of the coalitions are of size k, with

which, if N = kq + r, then the k-stable partition has q coalitions of size k and one of size

r. Furthermore, this partition is stable in the usual sense as no individual can improve her

payments without reducing the benefits of other individuals. Observe that k-stable partitions

are constrained efficient because the largest possible number of individuals (kq) reach their

maximum aggregate payoff t(k)xi, and the rest obtain the maximum payoff t(r)xi. The grand

coalition is a special case of k-stable partitions when k ≥ N .

Proposition 2.3. Unlike the equal sharing rule, coalitions of a k-stable partition are not neces-

sarily consecutive.

Proof. This occurs because individuals do not have strict preference for forming coalition with

more able individuals. Heterogeneity is not bad since individuals are indifferent between form-

ing a group with other individuals with ability close or far from theirs. Given the sharing rule is

proportional, this is evident because any individual i ∈ N obtains the same payoff in a coalition

S than in any other coalition S ′ as long as both have the same cardinality. This is independent

of the abilities of the rest of the members in each coalition (the composition of each group) and

of the distribution of abilities. That is to say, t(|S|)xi = t(|S ′|)xi if and only if |S| = |S ′| as t is

strictly increasing.

Notice that there are
(
N
k

)(
N−k
k

)
. . .
(
k+r
k

)
k-stable partitions, taking into account all the

possible permutations of N . Individual payoffs are equal for each partition consisting of q

coalitions of size k and one of size r < k as long as the individuals of this smallest coalition

are the same, and this is independent of the composition of the other q coalitions. Indeed, let P

and Q be two partitions with the aforementioned characteristics such that the coalition of size
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r forms. Then, each individual i that belongs to a coalition of size k under the partition P will

be in another coalition of size k under partition Q. Therefore, under both partitions, she will

receive t(k)xi, and the remaining r individuals will also preserve their payoffs.

Remark 2.1. The partition consisting of q coalitions of size k and one of size r such that all the

coalitions are consecutive, is also k-stable.

Not every k-stable partition gives the same aggregate payments since they depend on the

“position" of the coalition of size r. However, as long as r = 0 or the coalition of size r is

the same in both partitions, they offer the same aggregate payoffs. Indeed, let P and Q be both

k-stable partitions, such that the coalition of size r of both coincide, this is Pr = Qr. Then,

t(k)
∑
P1

xi + . . .+ t(k)
∑
Pq

xi + t(r)
∑
Pr

xi = t(k)
N−r∑
i=1

xi + t(r)
∑
Sr

xi

= t(k)
∑
Q1

xi + . . .+ t(k)
∑
Qq

xi + t(r)
∑
Qr

xi

since ∪qi=1Pi = ∪qi=1Qi and Pr = Qr.

As we have shown earlier, with no exogenous restrictions of size of admissible coalitions

(in other words, when k ≥ N ), the equilibrium partition is the one that consists of one large

group which is also optimum since it maximizes both total and individual payoffs. Unrestricted

size of coalitions may not be achievable in many situations since it can be costly in organizational

or spatial terms. However, we shall show that, under certain conditions, we can still restrict

the size of coalitions in such a way that the aggregate payoffs will be greater in the equilibrium

under the proportional sharing rule than under equal sharing. We state this result in the following

theorem and propose an algorithm to find an appropriate bound k.

Recall that under the equal sharing rule there is a unique equilibrium partition S. Let SM

and Sm be the largest and smallest coalitions of S, respectively. As Farrell & Scotchmer (1988)

show, when the distribution of abilities is uniform, SM consists of the most able individuals,

while Sm, of the least able ones.
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Theorem 2.1. To obtain larger aggregate payoffs with the consecutive k-stable partition relative

to S, the stable partition under equal sharing, it is sufficient to fix a limit size k ≥ k̂, where k̂ is

given by as follows:

1. If N is divisible by |SM |, then set k̂ = |SM |;

2. If N is not divisible by |SM |, then set k̂ as the smallest integer that is larger than |SM |

which satisfies one of the following conditions:

(i) k̂ is divisor of N , or

(ii) the division of N by k̂ gives a reminder r greater than |Sm|.

Proof. We show that, in both cases, the consecutive k-stable partition under proportional sharing

gives larger aggregate payoffs than the equilibrium under the equal sharing rule.

CASE 1: When |SM | is divisor of N and q is the quotient, the consecutive partition P =

{P1, . . . , Pq} where |Pj| = |SM | for each j = 1, . . . , q is a k̂-stable partition with k̂ = |SM |.

Under this partition, the total payoffs are

t(|SM |)
∑
P1

xi + . . .+ t(|SM |)
∑
Pq

xi = t(|SM |)
N∑
i=1

xi.

On the other hand, the stable partition under equal sharing, S = {Sm, . . . , SM}, which is also

consecutive, has aggregate payoffs of

t(|SM |)
∑
SM

xi + . . .+ t(|Sm|)
∑
Sm

xi < t(|SM |)
∑
SM

xi + . . .+ t(|SM |)
∑
Sm

xi = t(|SM |)
N∑
i=1

xi.

Therefore, total payoffs of the k-stable partition are equal or higher.

CASE 2: If N is not divisible by |SM |, then
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(i) Let k̂ be larger than |SM | and be a divisor of N . The proof of this case is analogous since

t(|SM |)
∑
SM

xi + . . .+ t(|Sm|)
∑
Sm

xi < t(k̂)
∑
SM

xi + . . .+ t(k̂)
∑
Sm

xi = t(k̂)
N∑
i=1

xi.

(ii) Let k̂ be the smallest integer that is larger than |SM | which satisfies that the division of N

by k̂ gives a reminder r greater than |Sm|. Let q be the quotient of the division of N by k̂,

and let P = {P1, . . . , Pq, Pr} be the consecutive k-stable partition where P1, . . . , Pq are

the coalitions of size k̂, and Pr the coalition of size r.

If there is h such that ∪q
l=1Pl = ∪h

l=1Sl (clearly, h 6= m), by an analogous argument,

the reduced partition P ′ = {Pl}l 6=r gives higher total payoffs than the reduced partition

{S1, . . . , Sh} since the size of every Pl is at least as large as that of each Sl. Furthermore,

Pr = ∪ml=h+1Sl and then,

t(r)
∑
Pr

xi = t(r)
∑
Sh+1

xi + . . .+ t(r)
∑
Sm

xi > t(|Sh+1|)
∑
Sh+1

xi + . . .+ t(|Sm|)
∑
Sm

xi

since r ≥ |Sl| for l = h+ 1, . . . ,m. Therefore, total payoffs under P are higher than that

under S.

If there does not exist such an h, then let ĥ be the minimum necessary such that ∪ql=1Pl ⊂

∪ĥl=1Sl. Since r ≥ |Sm|, ĥ 6= m. Let Sĥ1
, Sĥ2

be such that Sĥ = Sĥ1
∪ Sĥ2

and

∪ql=1Pl = ∪ĥ−1l=MSl ∪ Sĥ1
. Then, since k̂ ≥ |Sl| for all l = M, . . . , ĥ − 1, ĥ1, the ag-

gregate payoffs are higher under the reduction {P1, . . . , Pq} of P than under the reduction{
SM , . . . , Sĥ−1, Sĥ1

}
of S. For the remaining elements of both partitions we have some-

thing similar since Pr = ∪m
l=ĥ+1

Sl ∪ Sĥ2
and r ≥ |Sl| for each l = ĥ2, ĥ+ 1, . . . ,m.

Therefore, in each case, the aggregate payoffs are higher under the k-stable partition than under

the equal sharing equilibrium.

We have thus found a limit size k which is the least restrictive possible. The process to
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find the threshold value k̂ can be illustrated by the following algorithm, represented by a pseudo

code.

Result: Appropriate limit size of coalition k

Input: N , SM , Sm;

Set k equal to |SM | ;

if N is divisible by |SM | then

return k̂;

else

while the reminder of dividing N by k̂ is less than |Sm| or N is divisible by k̂ do
Set k̂ equal to k̂ + 1

end

return k̂
end

Note that under a k-restricted size of coalition there may exist a different partition that

gives larger total payoffs than our consecutive k-stable one; however, such partition will not

form an equilibrium (it is not k-stable). Observe that the above theorem clearly implies that

there are gains in efficiency under the proportional sharing rule compared with equal sharing

even when we restrict the size of each coalition.
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Chapter 3

Continuum of agents

3.1 The stable and efficient partitions

In this chapter, we consider a continuum of agents on [0, 1]. The abilities of the individuals

are distributed on the interval [0,M ]. To simplify calculations, we shall work with the uniform

distribution, which allows us to re-scale the mass of individuals on the interval [0,M ], and to

measure the size of a coalition as the measure of the subsets of [0,M ] (divided by M ). There-

fore, we can focus on partitions of the interval [0,M ] representing all the possible divisions

of individuals into coalitions. Assume that the payoff to each individual that belongs to the

coalition S is given by t(µ(S))x, where t : [0,M ] → R+ is a strictly increasing function and

µ is the Borel measure on R. Therefore, the aggregate payoffs for a coalition S are given by

t(µ(S))
∫
S
xdF (x) = t(µ(S))

∫
S
xf(x)dx (taking the limit, with the Riemann integral).

Definition 3.1. Let P and Q be partitions of measurable sets of the interval [0,M ], and let µ

be the usual measure on R. Define the binary relation ∼ as follows: P ∼ Q if there exists a

bijection Φ : P → Q such that Φ(Pl) = Qh if and only if µ(Pl M Qh) = 0, where M represents

the symmetric difference between Pl and Qh.

Lemma 3.1. The binary relation ∼ is an equivalence relation.
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Proof. It is immediate to verify that the binary relation ∼ is reflexive and symmetric. So, the

only property we have to prove is transitivity. Let P ,Q andR be measurable partitions of [0,M ]

such that P ∼ Q and Q ∼ R. Then, for each Pl ∈ P , there exists Qh ∈ Q and Rs ∈ R such

that µ(Pl M Qh) = µ(Qh M Rs) = 0. Therefore, µ(Pl M Rs) = 0. Indeed,

Pl M Rs = (Pl ∩Rc
s) ∪ (P c

l ∩Rs)

= (Pl ∩ (Qh ∪Qc
h) ∩Rc

s) ∪ (P c
l ∩ (Qh ∪Qc

h) ∩Rs)

= [((Pl ∩Qc
h) ∪ (Qh ∩ Pl)) ∩Rc

s] ∪ [((P c
l ∩Qc

h) ∪ (Qh ∩ P c
l )) ∩Rs]

= [(Pl ∩Qc
h ∩Rs

s) ∪ (Pl ∩Qh ∩Rc
s)] ∪ [(P c

l ∩Qc
h ∩Rs) ∪ (P c

l ∩Qh ∩Rs)]

⊆ (Pl ∩Qc
h) ∪ (Qh ∩Rc

s) ∪ (Qc
h ∩Rs) ∪ (P c

l ∪Qh)

= (Pl M Qh) ∪ (Qh M Rs).

Therefore, µ(Pl M Rs) ≤ µ(Pl M Qh) + µ(Qh M Rs) = 0, and hence, ∼ is an equivalence

relation.

Remark 3.1. Notice that Qh = Φ(Pl) implies µ(Pl) = µ(Qh). Indeed, Pl ⊆ Pl ∪ Qh = (Pl M

Qh) ∪ (Pl ∩ Qh), which implies µ(Pl) ≤ µ(Pl M Qh)) + µ(Pl ∩ Qh) ≤ µ(Qh). Analogously,

µ(Qh) ≤ µ(Pl), with which we have the result.

Denote by [P ] the equivalence classes defined by the relation ∼. With the assumption of

uniform distribution, we can consider the measure of a coalition as the measure of the set of the

partition it represents. Also, we shall only consider partitions consisting of a finite number of

coalitions in order to guarantee that all of them have relevant impacts on the equilibrium payoffs.

Lemma 3.2. If two finite (or numerable) partitions P and Q belong to the same equivalence

class, then each agent obtains the same payoffs in both the partitions. If there is a set of agents

who obtains different payoffs, then this set has measure zero.

Proof. Suppose on the contrary that there is A ⊆ [0,M ], such that µ(A) > 0 and for each

x ∈ A, t(µ(Px))x > t(µ(Qx))x. Notice that, since P is finite, there is B ⊆ A of positive
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measure such that B ⊆ Pl for some l. Thus, for each x ∈ B, t(µ(Pl))x > t(µ(Qx))x, which

implies for all x ∈ B, Qx 6= Qh = Φ(Pl). This is, for all x ∈ B, x ∈ Pl \Qh ⊆ Pl M Qh, which

implies that B ⊆ Pl M Qh y µ(B) ≤ µ(Pl M Qh) = 0, which is a contradiction.

Remark 3.2. If P and Q belong to the same equivalence class, then the payments for each

coalition of positive measure are the same under both partitions. This follows from the previous

remark since if two partitions are equivalent, the coalitions of positive measure in both partitions

are of same measure.

We shall say that a partition P = {Pl}l∈L of the interval [0,M ] is k-feasible if it is finite

(i.e., it consists of a finite number of coalitions) and µ(Pl) ≤ k for all l ∈ L. We shall call a

partition k-stable if it is k-feasible and there is no other k-feasible partition such that the measure

of the set of individuals that are better off is higher than the measure of the set of those that are

worse off.

Remark 3.3. Notice that if a partition is k-stable, then all the elements of its equivalence class

are also k-stable. Thus, we can refer to classes of k-stable partitions.

Lemma 3.3. The coalition that maximizes the aggregate payoffs is the grand coalition.

The argument is analogous to the finite case since we can distribute the integral on the

interval [0,M ] into any partition. Let P = {P1, . . . , Pl} be a partition of the interval [0,M ].

Then, the aggregate payoffs under this partition are lower than those under the grand coalition:

t(µ(P1))

∫
P1

xf(x)dx+ . . .+ t(µ(Pl))

∫
Pl

xf(x)dx < t(M)

∫ M

0

xf(x)dx.

Proposition 3.1. With no restriction on the coalition size (equivalently, when k ≥M ), the grand

coalition is the unique stable and coalition under the proportional sharing rule.

Proof. Note that, under the grand coalition every individual gets a higher payoff than under any

other coalition structure since t(µ(Pi))xi < t(M)xi. Therefore, no other partition can block the
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grand coalition. To show the uniqueness, let {P1, . . . , Pl} be an arbitrary partition of [0,M ].

Under this partition, each individual would be better-off if any two coalitions are merged into a

single one. Moreover, no individual in the remaining coalitions would be worse off. Therefore,

no coalition can improve upon the grand coalition.

Proposition 3.2. If we restrict attention to k-feasible coalitions, where k ≤ M , then the equiv-

alence classes of k-stable partitions will consist of those that have at most one coalition of

measure less than k. Let M be equal to kq + r where q ∈ N is the quotient and r ∈ R+ is the

reminder of the division of M by k. Then, the classes of k-stable partitions will be the classes of

Pk∗ partitions—those that consist of q coalitions of size k and one of size r.

Proof. To simplify notations, we shall use |·| instead of µ(·). The proof of this result is analogous

to the finite case. First, note that a Pk∗ partition is k-stable since no coalition of size k can accept

any other set of individuals of positive measure (and a deviation to a group of measure zero will

have no effect). Moreover, any deviation of positive measure of agents from a partition of size

k to the only partition of size less than k would at most lead to an improvement index of zero.

For the other implication, we proceed by contradiction. Suppose P is a k-stable partition

that has two coalitions Pl and Ph such that |Pl|, |Ph| < k. We show that the payoffs for the

individuals in both coalitions are higher when these two coalitions can merge into a single one.

We have two possible cases:

Case 1: If |Pl| + |Ph| ≤ k, each individual i in the coalition Pl obtains the payoff t(|Pl|)x and

each individual in the coalition Ph receives t(|Ph|)x. Clearly, both coalitions can be merged into

one coalition Pl ∪ Ph without violating the feasibility condition. Moreover, each member i of

this new coalition Pl ∪ Ph would receive payoff t(|Pl| + |Ph|)x, which is strictly higher than

what she would obtain either in Pl or in Ph. Also, notice that by doing so, no individual will be

worse off. That is, the partition P ′ obtained from P by merging coalitions Pl and Ph into one

blocks P . Therefore, P is not k-stable.

Case 2: Let |Pl|+ |Ph| > k. Without loss of generality, assume that |Pl| > |Ph|. The individuals
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in coalition Pl would gain by accepting in their coalition a set of individuals of measure k −

|Pl| from coalition Ph and the new members of this coalition would also gain. This means,

this union would make a set of individuals of size k better off since each member of the new

coalition will receive t(k)x, while under the original partition they would obtain t(|Pl|)x or

t(|Ph|)x, respectively. On the other hand, there is a set of individuals that are worse off under

the deeviation: those who where left out by the members that left coalition Ph to join coalition

Pl; however, the measure of this set is |Ph|−(k−|Pl|) = |Ph|+ |Pl|−k < k. Then, the partition

P ′ generated fromP by merging coalitions Ph and Pl into one of measure k and another coalition

of size |Ph|+ |Pl|−k block P since it is feasible and improves the payoffs of a set of individuals

of size k while reducing the payments of a set of size |Ph|+ |Pl| − k.

Remark 3.4. Using the same arguments we used for the finite case, it is easy to prove the

following statements:

(i) Pk∗ partitions are less efficient than the grand coalition.

(ii) Under the Pk∗ partitions, the maximum possible measure of individuals (kq) get the max-

imum payments available: t(k)x.

(iii) Individuals do not prefer to form coalitions with the most able individuals, since they

receive the same payments in any two coalitions as long as both have the same measure.

That is to say, t(µ(S))x = t(µ(S ′))x⇐⇒ µ(s) = µ(S ′).

(iv) The Pk∗ partitions are no necessarily consecutive, but the consecutive partition where the

less able individuals form coalition of measure r is a Pk∗ partition.

(v) Not every Pk∗ partition has the same aggregated payments, only those where the coalition

of size r matches.

The result of Theorem 1 can be generalized to the continuum case. To do this, consider a

continuum of agents uniformly distributed on the interval [0,M ]. Let SM and Sm be the largest
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and smallest coalitions, respectively, in the unique stable partition, S under the equal sharing

rule. Then, SM consists on the most able individuals while Sm on the least able ones. The result

goes as follows.

Theorem 3.1. The consecutive k-stable partition is more efficient than the one under the equal

sharing rule, it is sufficient to have a limit size k ≥ k̂, where k̂ is determined as follows:

1. If the division of M by µ(SM) has a integer quotient q, then set k̂ = µ(Smax);

2. If not, set k̂ as the smallest real number that is larger than µ(SM), which satisfies one of

the following conditions:

(i) the quotient q of the division of M by k̂ is an integer

(ii) the integer division of M by k̂ (integer quotient q) gives a reminder r greater than

µ(Sm).

Proof. The proof is analogous to the finite case. We show that, in both cases, the consecu-

tive k-stable partition under proportional sharing rule yields larger aggregate payoffs than the

equilibrium under equal sharing.

CASE 1: When the quotient q of the division of M by |SM | is an integer, the consecutive

partition P = {P1, . . . , Pq} where |Pl| = |SM | for each l = 1, . . . , q is a k-stable partition for

k = |SM |. Under this partition, the total payoffs are

t(|SM |)
∫
P1

xf(x)dx+ . . .+ t(|SM |)
∫
Pq

xf(x)dx = t(|SM |)
M∫
0

xf(x)dx

On the other hand, they aggregate payoffs associated with the equilibrium partition under equal
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sharing, which is also consecutive, are given by:

t(|SM |)
∫
SM

xf(x)dx+ . . .+ t(|Sm|)
∫
Sm

xf(x)dx < t(|SM |)
∫
SM

xf(x)dx+ . . .+ t(|SM |)
∫
Sm

xf(x)dx

= t(|SM |)
M∫
0

xf(x)dx

Therefore, aggregate payoffs of the k-stable partition are higher.

CASE 2: If the division of M by |SM | is not an integer,

i) Let k be the smallest real number larger than |SM | where the division of M by k has an integer

quotient q. It simply means that there exists a q ∈ N such that M = kq. The proof of this case is

analogous, since

t(|SM |)
∫
SM

xf(x)dx+ . . .+ t(|Sm|)
∫
Sm

xf(x)dx < t(k̂)

∫
SM

xf(x)dx+ . . .+ t(k̂)

∫
Sm

xf(x)dx

= t(k̂)

M∫
0

xf(x)dx.

ii) If there is an smallest k ∈ R such that M = kq + r, where q in an integer and r ≥ |Sm|, then we

can consider the two following cases.

If there exists h such that ∪ql=1Pl = ∪hl=MSl (clearly h 6= m), by an argument analogous to the

furthers, the reduced partition P ′ = {Pl}l 6=r gives higher total payments than the reduced partition

{SM , . . . , Sh} since the size of every Pl is at least as large as Sl. Furthermore, Pr = ∪ml=h+1Sl

and then,

t(r)

∫
Pr

xf(x)dx = t(r)

∫
Sh+1

xf(x)dx+ . . .+ t(r)

∫
Sm

xf(x)dx

> t(|Sh+1|)
∫

Sh+1

xf(x)dx+ . . .+ t(|Sm|)
∫
Sm

xf(x)dx
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since r ≥ |Sl| for l = h+ 1, . . . ,m. Therefore, total payments under P are higher than under S.

If there does not exist such h, let ĥ be the minimum necessary such that ∪ql=1Pl ⊂ ∪ĥl=MSl. Since

r ≥ |Sm|, ĥ 6= m. Let Sĥ1
, Sĥ2

such that Sĥ = Sĥ1
∪Sĥ2

and∪ql=1Pl = ∪ĥ−1l=MSi∪Sĥ1
. Then, since

k ≥ |Sl| for all l = M, . . . , ĥ − 1, ĥ1, the payments are higher under the reduction {P1, . . . , Pq}

of P than under the reduction
{
SM , . . . , Sĥ−1, Sĥ1

}
of S . For the remaining elements of both

partitions occur something similar, since Pr = ∪m
l=ĥ+1

Sl ∪ Sĥ2
and r ≥ |Sl| for each l = ĥ +

1, . . . ,m, ĥ2.

Therefore, in each case, the payments are higher under the k-stable partition than under the equal sharing

equilibrium.

As in the finite case, this result gives us an idea of how restrictive we could be with the

size of coalitions and still achieve gains in efficiency. To this end, we have argued that it may

not be feasible to form the grand coalition when the number of individuals is too large, and we

have proposed an exogenous restriction on size to analyze how far one can push to maintain

more efficiency under the proportional rule relative to the equal sharing rule. The next step is to

analyze how to obtain such restrictions endogenously. We shall show that such size restrictions

may emerge due to the presence of some organizational costs. In particular, we shall introduce

individualized cost functions that depend on group size, which would put limits on forming very

large coalitions.

3.2 Expansion costs and endogenous size restriction

We now consider a situation where each agent faces a cost of forming coalition, i.e., the larger

the coalition she belongs to, the higher is the cost she incurs. Such costs may be thought of as

the disutility that an individual faces by working in large groups. Let ci(|S|) be the cost function

of the agent i with ability xi, which is strictly increasing and convex. Given two individuals,

i, j ∈ N , we say i is “more averse to large groups” than j if ci(|S|) > cj(|S|). Given the
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type-dependent cost functions c1(·), . . . , cN(·), the aggregate payoffs of a given coalition S is

given by:

t(|S|)
∫
S

xf(x)dx− C(|S|) = t(|S|)
∫
S

xf(x)dx−
∫
S

ci(|S|)di.

An individual i with ability xi solves

S∗(xi) = argmax
S

{ui(|S|) ≡ t(|S|)xi − ci(|S|)} .

Because ui(·) depends only on the size of the group individual i belongs to, she would simply

maximize ui(|S|) with respect to S. Notice that ui(|S|) is strictly concave. The first order

condition of i’s maximization problem is given by:

t′(|S|)xi = c′i(|S|) ⇐⇒ xi =
c′i(|S|)
t′(|S|)

≡ fi(|S|),

where fi(·) is an increasing and positive function. The individual optimum is depicted in Figure

3.1.

Figure 3.1: The optimal choice of coalition of agent i
.

M

M

f i(
|S|)

xi

S∗(xi)

Source: Own elaboration
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Note that given her level of “aversion to large groups”, an individual with higher ability

would be more “tolerant” to heterogeneity within her group (in other words, to work with less

able individuals) since the positive effect of t is larger. That can be enunciated in the following

lemma.

Lemma 3.4. The optimum group size is monotonically increasing in ability.

This follows from the fact that fi(|S|) is an increasing function, whereas xi is a constant

function. When an individual is less averse to big groups, c′i(|S|) will increase slower, which

will conduce to a function fi with lower slope. On the other hand, an individual with higher

costs of expansion ci will have a fi of higher slope. Clearly, for any i if it is the case that

fi(M) < M , then S∗(xi) must be the grand coalition when xi ≥ fi(M) (because xi = fi(|S|)

yields |S| > M ). So, in general, and individual would not optimally choose the grand coalition,

which means a loss of efficiency under the proportional sharing rule. Moreover, with distinct

individual optima it is difficult to characterize a stable and efficient partition.

However, it is possible to construct examples where S∗(xi) = S∗ for all i ∈ N , i.e., all

agents have the same optima. In this case, letting k = |S∗|, the equilibrium is k-stable. Let the

individual cost function be

ci(|S|) = xiC(|S|) for all i ∈ N .

The function C(|S|) is an aggregate cost component that depends on the group size, and hence,

ci(|S|) is simply a proportional cost-sharing rule. In this case, S∗ solves

xi = fi(|S|) =
xiC

′(|S|)
t′(|S|)

⇐⇒ C ′(|S|) = t′(|S|).

Note that this situation is equivalent to the proportional surplus sharing rule because t̂(|S|) ≡

t(|S|)− C(|S|) represents the net surplus of a coalition S where ui(|S|) = t̂(|S|)xi. This situa-

tion is depicted in Figure 3.2. The above discussion is summarized in the following proposition.
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Figure 3.2: The |S∗|-stable partition.

M

M
Size

S∗

Source: Own elaboration

Proposition 3.3. Let the individual cost function implies proportional cost sharing, i.e., ci(|S|) =

xiC̄(|S|). Then, the unique consecutive constrained efficient stable partition involves q coali-

tions each of size |S∗| and one coalition of size r < |S∗|.
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Chapter 4

Quasi-proportional rules

In many organizations, the division of surplus does not obey neither equal sharing nor pro-

portional sharing. Rather, surplus is shared according to some non-linear sharing rule. For

example, a fraction of an organization’s total profits is divided equally among its members, and

the remaining fraction paid to each one according to her productivity or ability (as “bonus”).

Thus, in this chapter, we consider a sharing rule that is a convex combination of the equal and

proportional sharing rules, which we term the quasi-proportional sharing rule. The aggregate

surplus of a coalition S is given by:2

t(|S|)
∫
S

xf(x)dx.

Under the quasi-proportional rule, which divides 1−αS fraction of the surplus of a given coali-

tion S equally, and the remaining fraction, proportionally among the members of S, an individ-

ual i ∈ S consumes

ui(|S|) = (1− αS) · t(|S|)
|S|

∫
S

xdx+ αS ·
xi∫

S
xdx

t(|S|)
∫
S

xdx

= (1− αS) · t(|S|)
|S|

∫
S

xdx+ αS · t(|S|)xi.

2 If the abilities are uniformly distributed on [0,M ], then the aggregate surplus becomes 1
M

∫
S
xdx, which can be

written as
∫
S
xdx if we re-scale the support [0,M ] to [0, 1].
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The above sharing rule is indeed a convex combination of the equal and proportional sharing

rules, with corresponding weights 1−αS and αS , respectively. In the following proposition, we

analyze the effect of changes in αS and ability, xi.

Proposition 4.1. Let λS = 1
|S|

∫
S
xdx be the average ability of a given group S, ε(|S|) ≡ t′(|S|)|S|

t(|S|)

be the elasticity of t(·) with respect to group size, and |S∗i | ≡ |S∗(xi, λS, αS)| be the optimal

coalition size of individual i. If ε(|S|) is decreasing (increasing) in group size, S, then the

optimal choice of individual i, |S∗i | is increasing in both αS and the the ability of individual i

relative to S, xi/λS .

Proof. We have assumed that, in each coalition S, the minimum ability member has ability 0,

which allows us to think of coalition S as the interval [0, |S|].3 The first order condition of

individual i’s payoff maximization problem is given by:

(1− αS)
t′(|S|)|S| − t(|S|)

|S|2

∫
S

xdx+ αSt
′(|S|)xi = 0

⇐⇒ 1 +

(
αS

1− αS

)
xi
λS

=
1

ε(|S|)
. (4.1)

Now an increase in αS , i.e., greater weight on the proportional rule, or an increase in xi/λS

increases the left-hand-side of the above equation. Therefore, optimality dictates that ε(|S|)

must decrease. Therefore, if ε(|S|) is decreasing (increasing) in |S|, then S∗i would be increasing

(decreasing) in both αS and xi/λS .

Clearly, when αS = 0 for all S, we have the model of Farrell & Scotchmer (1988). In

this case, under uniform distribution, there is a unique stable structure in which coalitions are

consecutive, and more able individuals form larger coalitions. On the other hand, at αS = 1 for

all S, we have our model with proportional sharing rule where the grand coalition is the only

stable and efficient partition. What happens with stability and efficiency for αS ∈ (0, 1) for any

S is difficult to determine, and left as a topic for future research.

3 The analysis trivially generalizes to the case when a generic coalition is of the form [l, |S|+ l] for l > 0.
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Chapter 5

Conclusion

When heterogeneous individuals form groups in order to carry out productive activities, it may

be intuitive to believe that the easiest and fairest way to share their group surplus is to distribute

it equally. However, since individuals are not equal, equal sharing of surplus implies to loss

of efficiency due the trade-off between size or homogeneity each coalition faces. Such loss in

efficiency can be mitigated by deviating from equal sharing, e.g., the proportional sharing rule.

We show that, under proportional sharing rule, there is a unique stable and efficient coali-

tion structure, which is the grand coalition. We then find conditions under which smaller coali-

tions can form a (constrained) efficient and stable coalition structure. We show that such ex-

ogenous bounds on coalition size can be endogenized by introducing individualized expansion

costs. When such costs implies proportional cost sharing, there is an efficient and stable struc-

ture. Finally, we consider a convex combination of the equal and proportional sharing rules,

under which individual optimum size may vary non-monotonically with respect to ability.

Many questions are left open to answer. We have discussed situations where efficient

coalition structure differs from the individual optimum. Moreover, sometimes the individual

optimum is monotone in ability, and it is non-monotonic in other situations. The analyses of

efficient and stable coalition structures are on the agenda for future research.
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