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Abstract

This paper develops a model of evolution of beliefs through communication in an exogenous social network. We
assume that the agents are Bayesian updaters and that the network enables them to listen to the opinion of others
about some uncertain parameter of interest. We explore the effects of the network on the agents’ long-run first-order
beliefs about the parameter and investigate the aggregation of private information in large societies. Each agent observes
private signals about the value of the unknown parameter and, according to his connections in the network, receives
private messages from others as well. A message conveys some information about the signal observed by the sender and
about the messages that the sender receives from other indirectly connected agents. The informativeness of a message
is not strategically chosen but it is exogenously given by the intensity of the connection. Both signals and messages are
independent and identically distributed across time but not necessarily across agents. We first characterize the long-run
behavior of an agent’s beliefs in terms of some entropy-based measures of the conditional distributions of signals and
messages available to the agent. Then, we show that the achievement of a consensus in the society is closely related to
the presence of prominent agents who are able to change the evolution of other agents’ opinions over time. Finally, we
show that the influence of the prominent agents must not be very high in order for the agents to aggregate correctly their
private sources of information in the long-run.

Keywords: Communication networks, Bayesian updating, private signals, private messages, consensus, correct
limiting beliefs.

JEL Classification: D82, D83, D85.

Resumen

Este artículo ofrece un modelo de evolución de creencias a través de comunicación en una red exógena. Suponemos

que los agentes son Bayesianos, y que la red les permite escuchar las opiniones de otros sobre cierto parámetro incierto

de interés. Estudiamos los efectos de la red sobre las creencias de primer orden de los individuos sobre el parámetro

e investigamos la agregación de información privada en sociedades grandes. Cada agente observa señales privadas

sobre el parámetro desconocido y, según sus conexiones en la red, recibe mensajes de otros también. Un mensaje

transmite información sobre la señal observada por el emisor y sobre los mensajes que el emisor recibe de otros in-

dividuos conectados indirectamente. El grado de informatividad de un mensaje no es estratégico sino que está dado

exógenamente por la intensidad de la conexión. Señales y mensajes son independientes e idénticamente distribuidos

a lo largo del tiempo, pero no necesariamente entre agentes. Primero, caracterizamos las creencias de largo plazo de

un agente en términos de algunas medidas de entropía de las distribuciones condicionadas de las señales y mensajes

disponibles al agente. Después, demostramos que el logro de consenso en la sociedad está estrechamente relacionado

con la presencia de agentes influyentes que son capaces de cambiar la evolución de las opiniones de otros en el tiempo.

Por último, demostramos que la influencia de los agentes influyentes no debe de ser muy alta para que los individuos

agregen correctamente sus fuentes de información privada a largo plazo.

∗A companion paper appeared in Emile Borel and the Notion of Strategy: 90thAnniversary under the title “Evolution
of Beliefs in Networks.” For very useful conversations, I am grateful to Rabah Amir, Luciana Moscoso-Boedo, and Larry
Samuelson.
†División de Economía, Centro de Investigación y Docencia Económicas (CIDE).
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1 Introduction

In most social environments, coordinating decisions when individual payoffs depend on some un-

known parameter requires agents to reach similar beliefs about the parameter over time. Examples

of such decisions include consumption, occupational, investment, and voting choices. The evolution

of agents’ beliefs about an uncertain variable usually depend on (a) how they are influenced by their

own personal background, education, or personal learning about the variable (e.g., based on their

own casual observations or private research), and (b) how they gather information from neighbors,

friends, co-workers, local leaders, political actors, and prominent webpages. Social networks are

primary channels that transmit opinions about products, job vacancies, investment opportunities,

and political programs. The aim of this paper is to explore the relation between the network struc-

ture that connects a group of Bayesian updaters and the evolution of their first-order beliefs about

some common parameter of interest.

We develop a stylized model of network-based dynamic belief formation where there are two

types of information transmission: (a) each agent receives private information about the parameter

from an external idiosyncratic source and (b) there is communication between connected agents

about the information they are obtaining from their external sources.

More in detail, consider a group of agents who care about a payoff-relevant parameter. Each

of them begins with some initial prior and observes over time a sequence of private signals about

the parameter. The informativeness of such a stream of signals describes the quality of his learning

about the parameter through his external source. In addition, suppose that the agents are connected

through an exogenous (weighted and directed) social network that specifies a pattern of relations

where each agent can listen to the opinions of others. Each directed connection is characterized by

an exogenously given intensity that describes the quality of the information transmission from the

speaker to the listener. Specifically, at each date, each agent receives a non-strategic message from

each agent to whom he has a connection. Such a message is correlated with the sender’s signal

so that it conveys some information about the private signal that the speaker observes. In this way,

each agent receives some information about the stream of signals observed by each of his neighbors

over time. Given this framework, we investigate the conditions on the network structure under which

the agents will eventually reach a consensus in their first-order beliefs about the parameter value.

We also explore the conditions on the network under which the agents aggregate correctly the

decentralized information that they obtain from their external sources.

At a more intuitive level, the network describes exogenously given conduits through which the

agents listen to others speak about their personal learning. As a motivating example, consider a

group of investors deciding their investment in a collective fund. Each investor has a prior about the
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potential profitability of the fund and also collects some further information by studying privately a

number of characteristics of the fund. In addition, through communication, each investor can have

some access to the private analyses of the fund features made by other investors.

The amount of information that is transmitted from the speaker to the listener depends only on the

exogenous intensity of their directed connection and cannot be manipulated neither by the sender

nor by the receiver.1 We further assume that the intensity of each connection in the network is con-

stant over time, which leads to stationary updating processes, and that signals are communicated

along with their sources (i.e., the information sources are “tagged”). In the absence of communica-

tion between agents, the evolution of an agent’s beliefs is governed only by the combination of his

priors and the information that he receives from his private source. Since we allow the agents to

begin with different priors, we must specify carefully how an agent i uses another agent j ’s source

to update his beliefs over time once communication from j to i is taken into account. We assume

that the messages that agent i receives from agent j allows i to have some access to j ’s informa-

tion source but agent i does not incorporate in his belief-updating process any information about j ’s

priors. Instead, in order to revise his beliefs through communication from j , agent i uses his own

priors together with the information that he obtains when he places himself in j ’s position and uses

j ’s private source. Intuitively, thorough communication, agent i maintains his own priors and has

some access to the reports collected by agent j in his private analysis of the uncertain variable, but

he makes no use whatsoever of j ’s priors to update his beliefs.

We allow for the transmission of indirect information through the network. In particular, each

agent can pass the messages that he receives from his connections to any other agent who in turn

has a connection with him.

To complete the groundwork for our analysis, we need to address two final modeling assump-

tions. First, we need to adopt a particular measure of the informativeness of signals and messages.

In general, it is not obvious what constitutes an appropriate measure to rank a set of signals accord-

ing to their informativeness. Following recent developments on the ranking of information value, we

choose an entropy-based measure. More precisely, we use the average of the relative entropy of

the induced posterior (for the stationary Bayesian revision process) with respect to the prior. This

measure, which has some tradition in information theory, is known as the power measure. The

power measure is an interesting measure because it induces a complete order over signals. At a

more intuitive level, the power measure captures, from an ex-ante viewpoint, the gain of information

in moving from the prior to the posterior. We then identify the informativeness of an external source

1In this paper, we are not interested in the rich strategic interactions present in a sender-receiver game. We assume
that neither the sender nor the receiver choose the informativeness of the messages. Instead, such informativeness is
exogenously given by the quality of the channel that connects speaker and listener in the network.
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with the power of the corresponding signal and the intensity of a directed connection with the power

of the message associated with such a connection.

Second, we need to adopt a notion of what constitutes correct beliefs in our framework. The

beliefs of an outside Bayesian observer who begins with some priors and can use over time the

external sources available to all agents could converge to some limiting beliefs. These limiting beliefs

aggregate the decentralized information available to the agents in the sense that the evolution of the

observer’s beliefs over time obeys to the aggregation of the sources of information available to all

the agents. Furthermore, the evolution of the observer’s beliefs ignores the flows of information

through the network. On the other hand, each agent using only his own private source and the

information he obtains from his connections in the network could converge to some limiting beliefs.

Suppose that all the agents’ beliefs converge to some consensus limiting beliefs. Then, we ask

for which networks will the agents’ limiting beliefs coincide with the observer’s limiting beliefs. A

central observation that justifies our approach to correct limiting beliefs is that the aggregation of the

decentralized information sources provides us with an estimate of the true parameter value which

becomes arbitrarily accurate as the number of agents in the society grows (in the limit, tending to

infinity).

Our main results begin by identifying the presence of decay in the flow of information along the

connections in the network, in Lemma 1. Including some exogenous decay in the flow of information

across connections has been common in the economic literature on networks since the seminal

papers by Jackson and Wolinsky (1996), and by Bala and Goyal (2000). An interesting feature

of our model is that the presence of decay can be described very precisely in terms of the power

measures of signals and of messages in the network.

We then turn to provide a simple but complete characterization of an agent’s limiting beliefs, in

Theorem 1. In our model, an agent’s beliefs converge generically to some beliefs that put probability

one on a single parameter value. Our convergence results are determined by both the informative-

ness of the agent’s source and by how he is influenced due to his connections with other agents.

The role of the information that the agent obtains from his private source and from his connections

in the evolution of his beliefs can be neatly described in terms of a set of measures that depend on

the average likelihoods of the various parameter values. Armed with this result, we then provide a

set of necessary and sufficient conditions, in Theorem 2, under which an agent j is able to influence

another agent i in a way such that both of them end up with the same limiting beliefs that agent

j would reach in the absence of communication, that is, due only to his learning from his private

source. This can be naturally interpreted as agent j being able, through communication and as time

evolves, to convince agent i to share his views about the uncertain parameter. Our characterization
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result is provided in terms of the power measure of the connections between the agents in the soci-

ety and of other entropy-related measures. The advantages of using entropy-related measures are

that they summarize very precisely a number of features of priors, signals, and messages (which,

in fact, constitute the primitives of our model), and that they allow for complete rankings of these

distributions in terms of their levels of informativeness.

Intuitively, the conditions identified in Theorem 2 require that the intensity of the connections (ei-

ther direct or indirect) from i to j be sufficiently high so that agent i be influenced by agent j and, in

addition, that the intensity of the connections from agent j to any agent k in the society be sufficiently

low so that agent j be not in turn influenced by any other agent in the society. Furthermore, these

conditions also relate the power measures of the various connections in the network to the likelihood

measures that characterize the agents’ limiting beliefs. This allows for further insights. In particular,

in addition to the requirements on the intensities of the connections mentioned above, an agent j is

a good candidate to influence another agent i when (a) i ’s priors have little ex-ante uncertainty (i.e.,

they depart from uniformity), (b) i ’s source places relatively low intensity on the parameter value that

i would favor in the long-run in the absence of communication, (c) i ’s source places relatively high

intensity on the parameter value that j would favor in the long-run in the absence of communication,

and (d) the information that j receives from his connections in the network places high intensity on

the parameter value that he would favor in the long-run in the absence of communication. Intuitively,

these are conditions on how confident are the agents on the parameter values that they pick in the

long-run as the most likely ones due only to their private learning, and conditions on the discrep-

ancies between their levels of confidence on such parameter values. All these seem very natural

requirements and Theorem 2 states them very precisely in terms of some entropy-based measures

with a long tradition in information theory. Given a particular social network, our characterizations

of limiting beliefs and of opinion influence (Theorems 1 and 2), combined with our results on the

decay of the flow of information (Lemma 1), allow one to identify those prominent agents who might

influence crucially others in the society and to assess whether a consensus could finally be achieved.

For applications, our approach seems very useful in those cases where observables can be used

to estimate distributions over signals and messages. If we have information about such distributions,

then the entropy-related measures used in our results can be easily computed.

Our last result, Proposition 1, provides a sufficient condition on the levels of informativeness

of the connections in the network under which, provided that there is a consensus, the agents’

limiting beliefs aggregate correctly the information available to all of them through their external

sources. We show that a society with consensus attains correct limiting beliefs if the influence of the

prominent agents is not so large so as to distortion the evolution of beliefs that results by aggregating
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the information that all agents collect from their sources. Thus, by combining our results about

consensus with the sufficient condition in Proposition 1, we obtain the message that correct limiting

beliefs are associated, on the one hand, with a certain degree of influence by some prominent

agents. On the other hand, the influence of the prominent agents needs to be bounded so as to

prevent any distortion of the belief evolution that obey to the aggregation of all the agents’ sources.

Our results bear a clear resemblance with the results of the model by Golub and Jackson (2010),

whereby agents are not Bayesian and use instead a “rule of thumb” to update their beliefs. Although

agents are Bayesian in our model, we also obtain their insight that, to attain consensus and correct

limiting beliefs, a certain level of popularity is a bless whereas a disproportionate popularity is a

curse.

1.1 Related Literature

The current paper is related to several strands of the economic literature on networks and information

transmission, as well as to the statistics branch of information theory.

First, it is related to the literature that builds on the model of network influence due to DeGroot

(1974) in order to study how the network structure affects the transmission of first-order beliefs

among connected agents. This literature assumes that agents are non-Bayesian updaters and use

some “rule of thumb” to incorporate the opinions of other agents into their belief updating. In the

DeGroot’s model, agents update their beliefs by averaging their neighbors’ beliefs according to some

exogenous weights that describe the intensity of the connections between the agents. Therefore,

in these models, agents are “myopic” and fail to adjust properly for repetitions and dependencies in

information they hear several times. A major advantage of these models lies in their tractability. A

common feature of the present paper with these models is that the belief-revision processes have

a stationary nature over time. A classical contribution in this literature is DeMarzo, Vayanos, and

Zwiebel (2003) who propose a network-based explanation for the emergence of “unidimensional”

opinions. Closer in spirit to the questions we propose, they also provide some insights on the

correctness of learning. Within this literature, perhaps the paper closest to ours in terms of the

questions asked is Golub and Jackson (2010). Using a version of the DeGroot’s model, they examine

whether all beliefs in a large society converge to the truth. They show that the attainment of limiting

beliefs arbitrarily close to the true belief is characterized by the condition that the influence of the

most influential agent vanishes as the size of the society tends to infinity.

Compared to these papers, our model assumes a perfectly rational protocol of information gath-

ering by the agents. However, as it is also the case in this literature, our model is rigid in the fact

that the agents do not choose endogenously the intensities of their connections and in that such
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intensities are constant over time.

Our work is also related to the theoretical literature on common learning. Considering higher-

order beliefs, the question that this strand of the literature addresses is whether a group of agents

commonly learn (at least approximately) the true parameter value as time evolves. In a seminal

paper, for a setting where there is no communication among the agents, Cripps, Ely, Mailath, and

Samuelson (2008) show that (approximate) common learning of the parameter is attained when

signals are sufficiently informative and the sets of signals are finite. This result follows regardless

of the pattern of correlations between the agents’ signals. They assume that the agents start with

common priors and ask whether each agent not only assigns sufficiently high probability to some

given parameter value but also to the event that each other agent assigns high probability to such a

value, and so on, ad infinitum. Our approach is different from theirs in that we focus on the agents’

first-order posteriors about the parameter when they start with possibly different priors and use

Bayesian updating rules. More specifically, we do not consider ex-ante probabilistic assessments

that the agents could make over the histories underlying their beliefs, and we do not explore either

the evolution of the agents’ higher-order beliefs.2

Another difference between the current paper and the models within the learning literature where

the agents observe sequences of signals (e.g., Parikh and Krasucki, 1990; Heifetz, 1996; Koessler,

2001; Steiner and Stewart, 2011; Cripps, Mailath, Ely, and Samuelson, 2008 and 2013) is in the fact

that this literature usually evaluate the correctness of an agent’s beliefs by conditioning the posteriors

on a given value of the parameter, which is taken as the actual value. We do not consider this notion

of belief correctness since our focus is not on analyzing whether the agents, either individually or

commonly, learn the true parameter value by using their higher-order beliefs. In contrast, our model

can be seen as an attempt to introduce Bayesian updating rules into the DeGroot’s framework of

influence and evolution of first-order beliefs. Accordingly, as in the approach pursued by DeMarzo,

Vayanos, and Zwiebel (2003), and by Golub and Jackson (2010), our notion of belief correctness

asks whether the network structure allows for the aggregation of the decentralized sources of private

information of the agents.

Importantly, the result of common learning attainment by Cripps, Mailath, Ely, and Samuelson

(2008) requires that the sets of signals and messages be finite. This is not surprising since the

2In this respect, our notion of what constitutes “similar beliefs” departs from typical concepts of agreement used in the
learning literature. For instance, in their classical justification of the common prior assumption, Savage (1954, p. 48), and
Blackwell and Dubins (1962) establish that Bayesian updaters who observe the same sequences of sufficiently informative
signals will learn individually the true parameter value, and, as a consequence, they will reach an agreement. Individual
learning in this context requires that, conditioned on a parameter value, the agent assigns probability one to the event that
her limiting beliefs put probability one to that parameter value. Also, Acemoglu, Chernouzhukov, and Yildiz (2009) use a
notion of agreement that requires that the agents assign probability one to the event that their posteriors converge to the
same limiting beliefs.
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approach followed by the literature on learning usually assumes that each agent is able to keep

track of the higher-order beliefs of all agents about the signals that each of them is receiving at each

period. Clearly, this approach is less appealing when one considers a society where the number

of its members tends to infinity. In fact, the argument given by Rubinstein (1989) in his celebrated

email game suggests that common learning of the true parameter is precluded with arbitrarily large

societies. Our focus on first-order beliefs is justified by the fact that we consider large societies.

Another strand of the literature on learning in social networks considers that, in addition to ob-

serving signals, the agents are able to observe their neighbors’ past payoffs or past actions. A clas-

sical contribution within these models of observational learning is Bala and Goyal (1998), whereby

agents take repeated actions and can observe their neighbors’ payoffs. They obtain consensus

within connected components of the network since each agent can observe whether his neighbors

are earning payoffs different from his own. Also, Acemoglu, Dahleh, Lobel, and Ozdaglar (2011)

consider that agents can observe their neighbors’ past actions and focus on studying asymptotic

learning, defined as the convergence of the agents’ actions to the right action as the social net-

work becomes large. They provide conditions on the expansion of the network under which there is

asymptotic learning when private beliefs are either bounded or unbounded.

The present paper relates also to several branches of the literature on influence in networks

with non-Bayesian rules other than the one that stems from the DeGroot’s model. For example,

Acemoglu, Ozdaglar, and ParandehGheibi (2010) consider that the agents meet pairwise and adopt

the average of their pre-meeting beliefs. They study how the presence of agents who influence the

beliefs of others, but do not change their own beliefs, interferes with the spread of information along

the network. Although they do not focus on consensus in particular, our model allows for insights

with a similar flavor to theirs since some spread of beliefs among agents with different opinions

is required for consensus in the current paper. In our model, consensus can be precluded when

the intensities of the network connections do not allow an agent to listen enough to agents with

different opinions. Such an agent plays a similar role to a “forceful” agent in Acemoglu, Ozdaglar,

and ParandehGheibi (2010)’s model. Also, the question of whether consensus is attained under

non-Bayesian updating rules is analyzed by Acemoglu, Como, Fagnani, and Ozdaglar (2013). They

distinguish between “regular” agents, who update their beliefs according to the information they

receive from their neighbors, and “stubborn” agents, who never update their beliefs. They show

that consensus is never obtained when the society contains stubborn agents with different opinions.

Again, this insight bears some resemblance with ours when the connections of some agent do not

allow him to change his opinion over time, i.e., when he cannot be influenced by others.

The current paper is also related to the literature on strategic communication initiated by Craw-
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ford and Sobel (1982). The transmission of information in our model through signals and messages

is modeled exact the same way in which a sender transmits information to a receiver in a cheap

talk game. The crucial difference is that the amount of information transmitted in our model is not

endogenously chosen but it is exogenously given by the description of the external sources and

of the network connections, and it remains fixed over time. Some recent papers (e.g., Hagenbach

and Koessler, 2010; Galeotti, Ghiglino and Squintani, 2013) have proposed single-period sender-

receiver interactions to model information transmission in exogenously given networks. Acemoglu,

Bimpikis, and Ozdalagar (2011) also consider sender-receiver interactions to model information

transmission but they allow for multi-period communication and endogenize the network structure

over which messages flow. In their model, agents choose the level of informativeness of the mes-

sages they send. Importantly, despite the modeling differences of the present paper with their model,

we also obtain their insight that the presence of “influential” agents is important to aggregate infor-

mation correctly. Nevertheless, in our model the influence of such agents must be bounded.

Finally, our paper is also related to the literature on information theory and to a growing diverse

economic literature that uses entropy-based measures to describe levels of informativeness. The

concept of power of a signal that we use in this paper was originally proposed by Shannon (1948)

in his seminal paper on communication. Subsequently, entropy-based measures have been broadly

used by applied mathematicians to model a number of aspects of communication, ranging from data

compression and coding to channel capacity or distortion theory. Nevertheless, such measures have

remained seldom used by economists for decades. Recently a number of papers are incorporating

entropy-based measures to model communication and levels of informativeness in several economic

phenomena. For example, Sciubba (2005) uses the power of a signal to rank information in her

work on survival of traders in financial markets under asymmetric information. Cabrales, Gossner,

and Serrano (2013) propose, for a class of no-arbitrage investment problems under ruin-averse

preferences, an entropy-based measure which they call entropy informativeness. Using entropy

informativeness, they obtain the interesting result that one information structure dominates another

if and only if when the investment project associated with the first one is rejected at some price, then

so is the project associated with the second. Nevertheless, entropy informativeness is not a novel

concept in information theory since it coincides with the power measure of the signal associated to

the corresponding information structure.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3 analyses

the attainment of consensus and of correct limiting beliefs in the society, and Section 4 concludes

with a discussion of the results and of possible extensions. The proofs of all the results are grouped

together in the Appendix.

9



2 The Model

We will use É(X) throughout the paper to denote the set of all Borel probability distributions on a

given set X. For a probability distribution P , we will use EP [ · ] to denote the expectation operator

with respect to P .

There is a finite set of agents N = {1,2, . . . ,n} who care about the true value of an exogenous

parameter Ú ∈Ê = {Ú1,Ú2, . . . ,ÚL}.3 Time is discrete and indexed by t ∈ {0,1,2, . . . }. The true value

of Ú is selected by nature in period t = 0. Each agent i begins with a prior distribution pi ∈ É(Ê) that

describes his (subjective) beliefs about the parameter in period t = 0.

2.1 Belief Revision from Signals

The realized parameter value Ú is not observed directly by any agent. Instead, each agent i obtains

some private (noisy) information about the parameter through an idiosyncratic external source of

information. Each agent has access only to his own source of information. The interpretation of

an agent’s external source is that of his personal background, current education, or in general any

source of information, aside from what he can hear from other agents, through which he can learn

about the parameter. Agent i ’s source generates in each period t ≥ 1 a signal realization si t ∈ S =

{s1,s2, . . . ,sL} which is privately observed by agent i .4 When the true parameter value is Ú, agent

i ’s information source delivers signal s ∈ S with probability æÚ
i (s). We use æi (s) =

´
ÊæÚ

i (s)pi (Ú)

to denote the corresponding unconditional distribution. A signal profile in period t is denoted by

st = (si t)i∈N ∈ Sn. Each sequence of signal profiles {st}∞t=1 is assumed to be independent and

identically distributed across periods (conditional on the parameter). We then define an informative

signal for agent i (associated with his external source) as a set of conditional distributions over

signals Ði :=
{
æÚ
i ∈ É(S) : Ú ∈Ê

}
. Throughout the paper, we impose the following assumption on

informative signals.

Assumption 1. For each agent i there exists at least a parameter value Ú such that the conditional

distribution æÚ
i ∈ É(S) has full support.

Assumption 1 above guarantees that the agents’ limiting beliefs are well defined. In addition,

some results of the paper will require that we strengthen further our assumptions on signals by

imposing the following assumption instead.

3Although the parameter space is assumed to be finite, the extension of our main results to a compact, but not neces-
sarily finite, parameter space would only change sums to integrals in the appropriate formulae.

4We assume that |S | = |Ê| in order to allow an information source for full information disclosure.
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Assumption 2. For each agent i and each parameter value Ú, the conditional distribution æÚ
i ∈ É(S)

has full support.

Using Bayes rule, an informative signal Ði allows agent i to update, in each period t ≥ 1, his

information about the parameter Ú. Because distributions over signals are constant over time, this

Bayesian updating process is stationary. Let qs
i ∈ É(Ê) denote agent i ’s posteriors about Ú, upon

observing signal si = s, which the agent obtains using the informative signal Ði . We have:

qs
i (Ú) =

æÚ
i (s)

æi (s)
pi (Ú) =

æÚ
i (s)pi (Ú)´

ÊæÚ′
i (s)pi (Ú′)

.

2.2 Directed Links in the Social Network

We consider that the agents receive information not only from their private information sources but

they can also listen to the opinions of other agents. More precisely, the agents are connected

through an exogenous social network which allows each of them to listen, in each period t, to other

agents’ opinions about the parameter Ú. We focus on directed networks where links are one-sided.

A directed link from agent i to agent j is denoted by Ñi j and it allows i to receive messages from

j . Specifically, we assume that, in each period t ≥ 1, each agent i receives a (private) message

realization mi j t ∈ M = {m1,m2, . . . ,mL} from each agent j to whom he has a directed link.5 The

message mi j t conveys some (noisy) information about the signal sj t that the sender j is observing

at that t. Given the information that agent i obtains about the signal sj t that j observes, agent i

uses j ’s signal Ðj to update his beliefs about Ú. Intuitively, through this type of communication,

agent i has some (noisy) access to agent j ’s background or current education. The specification

of a directed link Ñi j , which we will formally present in the next subsection, determines the level of

informativeness of the message mi j t.

Besides direct attention to the information sources of others, we consider that the network also

allows for indirect attention. More precisely, we assume that messages can be transmitted indirectly

through directed links. In other words, given two directed links Ñik and Ñkj , agent k can receive

a message from agent j and then pass it through to agent i . Therefore, through the links Ñik and

Ñkj , agent i receives, in each period, two different messages, one direct message from agent k

(mik) and one indirect message from agent j (mi j , which was previously received by agent k from

agent j). The message mik conveys information about the signal sk observed by agent k while the

message mi j conveys information about the signal sj observed by agent j . Nonetheless, for the

clarity of exposition, it is convenient to focus first on the description of the transmission only of direct

5We assume that |M | = |S | so that each directed link allows for full information disclosure about the signal observed by
the sender.
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messages through links.

2.3 Information Transmission (only) with Direct Messages

Suppose for the moment that the agents receive only direct messages so that an agent cannot pass

to another agent a message that he has received from a third agent. A message vector6 received

by agent i in period t is denoted by mi t = (mi j t)j∈N\{i} and a message profile in period t is denoted

by mt = (mi t)i∈N . We assume that each sequence of message profiles {mt}∞t=1 is independent and

identically distributed across periods.

2.3.1 Belief Revision from Direct Messages

For each period t, the distribution over messages observed by agent i , conditional on agent j ’s signal

realization sj t = s, is denoted by ãs
i j and the corresponding unconditional distribution is denoted by

ã i j . We define an informative message from agent j to agent i as a set of conditional distributions

over messages Îi j :=
{
ãs
i j ∈ É(M) : s ∈ S

}
.

Using Bayes rule, an informative message Îi j allows agent i to update, in each period t, his

beliefs about j ’s private signal sj t by observing the message mi j t. As in the case of informative

signals, this Bayesian updating process is stationary since distributions over messages are constant

over time.

Given the informative signals and the informative messages, an agent i can use his informa-

tion about the sequence
{
sj t

}∞
t=1

to update over time his beliefs about the parameter Ú. In other

words, by combining the informative signal Ðj with the informative message Îi j , agent i can use the

information that he hears directly from agent j to update his beliefs about Ú.

Since we consider that the priors of the agents may differ, we must specify very carefully how

an agent i uses other agent j ’s informative signal Ðj together with an informative message Îi j to

update his priors pi about Ú. The difficulty comes from the fact that, since agents i and j may

have different initial opinions about the occurrence of Ú (i.e., pi , pj ), then they may have different

opinions about the unconditional distributions over signals and messages as well. With different

priors, this disagreement appears even though the agents have the same (common knowledge)

information about the corresponding conditional distributions, æÚ
i , æÚ

j , and ãs
i j . Given this difficulty,

we assume that, through a directed link Ñi j , agent i is able to use signal Ðj , but with the restriction

that his knowledge about the occurrence of sj (conditional on the messages that he receives from

6In principle, our description of message vectors captures a situation in which each agent receives messages from
each other agent in the society. Nevertheless, the specification of a link Ñi j will determine the degree of informativeness
of the messages mi j t that flow through it. In some cases, the corresponding degree of informativeness can be null, which
is interpreted as if there is actually no directed link from agent i to agent j and, therefore, as if i receives no message
whatsoever from j .
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agent j) is given by the corresponding Îi j and that his prior knowledge of Ú is given solely by pi . In

particular, agent i does not incorporate any information about pj to update his beliefs about Ú. For

our setting, this seems to be the most natural approach with heterogeneous priors.

Specifically, for two agents i , j ∈ N, let

æj [i](s) :=
¼
Ê

æÚ
j (s)pi (Ú)

denote the probability that agent i observes signal s according to agent j ’s private signal Ðj , but

given that he uses his own priors pi to compute the probability of occurrence of Ú. Note that æi [i] =

æi for each agent i . Also, let qs
i [Ðj ] denote agent i ’s posterior beliefs over Ê given that he knows

that agent j observes signal s, and given that he uses agent j ’s signal Ðj to update his own beliefs

pi about Ú. Using Bayes rule, we have:

qs
i [Ðj ](Ú) =

æÚ
j (s)

æj [i](s)
pi (Ú) =

æÚ
j (s)pi (Ú)´

ÊæÚ′
j (s)pi (Ú′)

.

The expression above simply describes how agent i updates his priors when he has access to agent

j ’s informative signal Ðj and, in addition, he knows that the signal that j observes is s. However, the

information that agent i receives about the signal that agent j observes is noisy, and the correspond-

ing degree of informativeness is determined by the informative signal Îi j . Specifically, given the

informative signal Îi j , let èÚ
i j (m) =

´
S ã

s
i j (m)æÚ

j (s) be the probability that agent i receives message

m from agent j , conditional on Ú being the true parameter value. Also, let èi j (m) =
´

S ã
s
i j (m)æj (s)

be the corresponding unconditional probability. Then, if we denote by rmi j the posterior beliefs of

agent i about the signal that agent j observes, given that i receives message m from j , we have:

rmi j (s) =
ãs
i j (m)

èi j (m)
æj (s) =

ãs
i j (m)æj (s)´

S ã
s′
i j (m)æj (s′)

.

Finally, we use qm
i j ∈ É(Ê) to denote agent i ’s posteriors about Ú, upon receiving message mi j t =m

from agent j . Using the conditional probabilities qs
i [Ðj ] and rmi j obtained above, the posteriors qm

i j

are correctly specified as:

qm
i j (Ú) :=

¼
S

rmi j (s)q
s
i [Ðj ](Ú) =

pi (Ú)
èi j (m)

¼
S

ãs
i j (m)æÚ

j (s)æj (s)

æj [i](s)
.

For convenience, we define

è̃Ú
i j (m) :=

¼
S

ãs
i j (m)æÚ

j (s)

[
æj (s)
æj [i](s)

]
. (1)

The expression è̃Ú
i j (m) above is the formal definition of the subjective probability (conditional on Ú)

that agent i assigns to receiving message m from agent j , under the additional condition that agent i
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uses æÚ
j and pi (instead of pj ) to compute the occurrence of sj . Thus, agent i uses his own priors pi

to compute the probability that agent j observes his signals or, in other words, he uses æj [i] instead

of æj . Note that if agents i and j share the same priors, pi = pj , then æj [i] = æj so that è̃Ú
i j = èÚ

i j .

Using the subjective conditional probability è̃Ú
i j , the posteriors above over the parameter space can

be alternatively expressed as

qm
i j (Ú) =

è̃Ú
i j (m)

èi j (m)
pi (Ú). (2)

We can now define formally a directed link. The directed link from agent j to agent i associ-

ated with the signal Ðj and the informative message Îi j is the set of conditional distributions over

messages

Ñi j :=

èÚ
i j ∈ É(M) : Ú ∈Ê, such that èÚ

i j (m) =
¼
S

ãs
i j (m)æÚ

j (s)

 .
Note that the informational primitives of our model are (a) the agents’ priors pi , (b) the set of infor-

mative signals Ði , and (c) the set of informative messages Îi j . The directed links are obtained from

these primitives. Nevertheless, it is very convenient to consider the set of directed links as our main

analytical tool to formalize the transmission of information between agents. Intuitively, a directly link

Ñi j allows agent i to have some access to agent j ’s private signal and, by doing so, to update his

beliefs about the parameter Ú. The amount of information that agent i receives in this way about Ú

is determined by the informativeness of the directed link Ñi j . In the next subsection we describe the

approach that we propose to measure such informativeness.

Notice that we do not allow for the possibility that the agents manipulate strategically the mes-

sages they send, neither that they withhold any information they posses about their signals. The

information they send to others is noisy but exogenously determined. As we mentioned earlier, our

research interest in this paper is not on strategic decisions about information disclosure. One way

to regard this benchmark is as one in which the agents previously made some investments in their

links in a way such that only hard information can flow through them. Then, once the links are

formed, their degrees of informativeness remain fixed and cannot be altered neither by senders nor

by receivers.

2.3.2 Measuring the Informativeness of Signals and Links

To measure the degree of informativeness about Ú attached to the agents’ external sources (through

informative signals) and to the communication between agents (through directed links), we make use

of some entropy-based concepts commonly used in information theory. We begin by defining the

entropy of a distribution.7

7In Definition 1, it follows the convention 0log0 = 0, which is justified by continuity.
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Definition 1. Let X be a finite set. The entropy (or Shannon entropy ) of a probability distribution

P ∈ É(X) is

H(P) := −
¼
X

P(x) logP(x).

The entropy of a distribution is always nonnegative and measures the average information con-

tent one is missing from the fact that the true realization of the associated random variable is un-

known. In other words, it measures the ex-ante uncertainty of the corresponding random variable.

In our model, the entropy of an agent i ’s priors will serve as an upper bound on the degree of

informativeness of his informative signal Ði .

To measure the information content of informative signals and messages, we rely on the concept

of relative entropy between distributions.

Definition 2. Let X be a finite set and let P ,Q ∈ É(X). The relative entropy (or Kullback-Leiber

distance) of P with respect to Q is8

D (P ||Q) :=
¼
X

P(x) log
P(x)
Q(x)

.

The relative entropy is not a metric,9 but, considering X as a sample space, it constitutes a

formal measure of the gain of information in moving from distribution Q to distribution P . The relative

entropy is always nonnegative and equals zero if and only if P = Q almost everywhere.

We apply the relative entropy to the agents’ posteriors with respect to their priors. Then, we

define the power of the informative signal Ði as the expectation of the relative entropy of the posterior

qs
i with respect to the prior pi .

Definition 3 (Power of the informative signal).

�(Ði ) := Eæi
[D (qs

i ||pi )] =
¼
S

æi (s)D
(
qs
i ||pi

)
. (3)

The power measure allows us to rank completely any set of informative signals according to

their degree of informativeness. We say that Ði is at least as informative as Ð ′i if �(Ði ) ≥ �(Ð ′i ).

Analogously, we define the power of the directed link Ñi j as the expectation of the relative entropy

of the posterior qm
i j with respect to the prior pi .

Definition 4 (Power of the directed link).

�(Ñi j ) := Eèi j

[
D (qm

i j ||pi )
]
=

¼
M

èi j (m)D
(
qm
i j ||pi

)
. (4)

8The following conventions are used: 0log(0/0) = 0 and, based on continuity arguments, 0log(0/a) = 0 and
a log(a/0) =∞.

9In particular, the relative entropy is not symmetric and it does not satisfy the triangle inequality either.
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Using the power of a directed link, we say that Ñi j is at least as informative as Ñ ′i j if �(Ñi j ) ≥

�(Ñ ′i j ). If �(Ñ ′i j ) = 0, then we interpret this as if there is actually no directed link from agent i to

agent j . The power measure is an interesting measure to account for the amount of information that

one gains by switching from his priors to his posteriors. Moreover, it induces a complete order over

signals in a number of interesting decision problems.10

We are ready now to define a directed network. A directed network Ñ is a set of directed links

which connects the agents in the society with a non-null degree of informativeness:

Ñ :=
{
Ñi j : i , j ∈ N, i , j , such that �(Ñi j ) > 0

}
.

As we mentioned earlier, a social network is determined by a set of informational primitives. For a

social network Ñ , we denote the set of its primitives by Ï (Ñ ) := 〈{pi }i∈N , {Ði }i∈N ,
{
Îi j

}
i ,j∈N
〉.

We turn now describe how information is transmitted through indirect messages.

2.4 Information Transmitted (both) with Direct and Indirect Messages

A directed path from agent i to agent j is a sequence Õi j = (Ñi i1 ,Ñi1 i2 , . . . ,ÑiK j ) of directed links such

that �(Ñi i1) > 0, �(ÑiK j ) > 0, and �(Ñik ik+1) > 0 for each k ∈ {1, . . . ,K −1}. We use Èi j [Ñ ] to denote

the set of all directed paths from agent i to agent j under network Ñ and

Ni :=
{
j ∈ N : there is some Õi j ∈ Èi j [Ñ ]

}
to denote set of agents to whom agent i has a directed path. We say that a directed network Ñ

is connected if, for each agent i ∈ N, there is at least one directed path Õi j ∈ Èi j [Ñ ] to each other

agent j ∈ N \ {i}. Intuitively, a network is connected if it allows each agent to hear (either directly or

indirectly) the opinions of each other agent in the society. Network connectedness can be regarded

as a basic prerequisite to study the achievement of a consensus in a society.

For a given network Ñ , an agent i may receive messages from other agent j through (possibly)

multiple paths Õi j ∈ Èi j [Ñ ]. We will restrict attention to those paths which convey the highest amount

of information.

For the transmission of indirect messages, we make the natural assumption that an agent k

uses the same conditional distribution ãsk
ik = ã

mkj
ik to transmit information to agent i both about the

signal sk that he observes and about the message mkj that he receives from another agent j .

10As mentioned in the Introduction, entropy-based measures have a long tradition in the theory of informativeness
orderings. In particular, the concept of power of a signal (under the label entropy power of a signal) dates back to
Shannon (1948)’s seminal paper on communication. The power of a signal has been subsequently used in economics,
for instance, by Sciubba (2005) to rank information in her work on survival of traders in financial markets under asymmetric
information. Recently, Cabrales, Gossner, and Serrano (2013) propose, for a class of no-arbitrage investment problems
under ruin-averse preferences, an entropy-based measure, which they call entropy informativeness, that coincides with
the power measure of the signal associated to the corresponding information structure.
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The interpretation of this assumption is that we consider the existence of a common technology for

information transmission, which is equally used both for signals and for messages that pass from

one agent to another.

Let èÚ
i j [Õi j ] ∈ É(M) denote the distribution over messages received by i from j through the

directed path Õi j , conditional on the parameter value being Ú. Let the corresponding unconditional

distribution be denoted by èi j [Õi j ]. For a directed path Õi j , let ás
Õi j
∈ É(M) denote the conditional

distribution over messages received by agent i from agent j , conditional on agent j observing signal

sj = s. Then, for a directed path specified as Õi j = (Ñi i1 ,Ñi1 i2 , . . . ,ÑiK j ), using the total probability

rule, we obtain, for the message mi j =m:

ás
Õi j
(m) =

¼
M

. . .
¼
M

ã
mi1 i2
i i1 (m)

K−2½
k=1

ã
mik+1 ik+2
ik ik+1 (mik ik+1)ã

miK j

iK−1 iK (miK−1 iK )ã
s
iK j (miK j ). (5)

Then, using the distribution ás
Õi j

specified above, we have èÚ
i j [Õi j ](m) =

´
S á

s
Õi j
(m)æÚ

j (s) and èi j [Õi j ](m) =´
S á

s
Õi j
(m)æj (s).

For a directed path Õi j = (Ñi i1 ,Ñi1 i2 , . . . ,ÑiK j ), we can now extend straightforwardly the expression

that gives us agent i ’s posteriors about parameter Ú to the case where i receives messages indirectly

from agent j through the path Õi j . First, we extend the expression of agent i ’s subjective conditional

probability given by (1) to the case where messages flow through paths:

è̃Ú
i j [Õi j ](m) :=

¼
S

ás
Õi j
(m)æÚ

j (s)

[
æj (s)
æj [i](s)

]
.

Secondly, if we let qm
i j [Õi j ] ∈ É(Ê) denote agent i ’s posteriors about Ú, upon receiving message

mi j =m from agent j (through the path Õi j ), then we obtain the following expression,

qm
i j [Õi j ](Ú) =

è̃Ú
i j [Õi j ](m)

èi j [Õi j ](m)
pi (Ú),

which is completely analogous to the expression in (2). Finally, we can also readily apply the concept

of power of a link to a path. For the expression of the posterior beliefs given above, the power of the

path Õi j is defined as

�(Õi j ) := Eèi j [Õi j ]

[
D
(
qm
i j [Õi j ] ||pi

)]
=

¼
M

èi j [Õi j ](m)D
(
qm
i j [Õi j ] ||pi

)
. (6)

Of course, agent i can receive indirect messages from another agent j through several different

paths in the network. We restrict attention to those paths to agent j which allows agent i to receive

the highest amount of information about Ú, that is, to those paths in the set{
Õ̂i j ∈ Èi j [Ñ ] : �(Õ̂i j ) ≥ �(Õi j ) ∀Õi j ∈ Èi j [Ñ ]

}
.

If the set above is not singleton, then we randomly pick one of its elements as our path of interest

and denote it by Õ̂i j . For future reference, we will denote èÚ
i j [Õ̂i j ] =: è̂

Ú
i j and èi j [Õ̂i j ] =: è̂i j .
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2.5 Evolution of Beliefs, Consensus, and Correct Beliefs

We introduce now a few additional concepts to analyze the evolution of the agents’ first-order posteri-

ors. A period-t history for agent i is a sequence hi t := ((si0,mi0), (si1,mi1), . . . , (si t ,mi t)) of signals

and message vectors received by agent i . The posterior belief of agent i about parameter Ú in each

period t is given by the random variable Þi (Ú |hi t) : Ê → [0,1]. For each agent i and each value

of the parameter Ú, the sequence of random variables
{
Þi (Ú |hi t)

}∞
t=1 is a bounded martingale,11

which ensures that the agents’ posterior beliefs converge almost surely (see, e.g., Billingsley, 1995,

Theorem 35.5).

Definition 5. A consensus is (asymptotically) achieved in the society if the posterior beliefs of all

agents converge to the same value regardless of their priors, that is, if for each i ∈ N, each pi ∈ É(Ê),

and for some (common) probability distribution p ∈ É(Ê),

lim
t→∞

Þi (· |hi t) = p.

Our notion of what constitutes correct beliefs requires that the network permits the aggregation

of the pieces of information transmitted by the private signals available to the agents. Consider an

external observer who has access to the external sources available to all agents in the society but

cannot use any directed link in the social network. The observer’s priors are given by a distribution

pob ∈ É(Ê). A period-t history for the external observer is a sequence ht := (s0,s1, . . . ,st) of signal

profiles. The posterior belief of the external observer about parameter Ú in each period t is given

by the random variable Þob(Ú |ht) : Ê → [0,1].12 With these preliminaries in hand, correct limiting

beliefs require that the communication processes allowed by the network structure aggregate the

diverse information obtained by the agents (from their external sources), exactly such as the external

observer does. A key observation in our framework is that, for large enough societies, the observer’s

limiting beliefs are arbitrarily accurate estimates of the true parameter value.

Definition 6. The directed network Ñ attains correct limiting beliefs if a consensus is achieved in

the society and, in addition, for each i ∈ N,

lim
t→∞

Þi (· |hi t) = lim
t→∞

Þob(· |ht).

11More formally,
{
Þi (Ú |hi t)

}∞
t=1 is a bounded martingale with respect to the (conditional) measure on Ê which is induced

by the priors (pi )i∈N , and the conditional distributions æÚ
i , èÚ

i j , for i , j ∈ N.
12Again, for each value of the parameter Ú, the sequence of random variables

{
Þob(Ú |ht)

}∞
t=1 is a bounded martingale

so that the external observer’s posteriors converge almost surely.
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3 Results

3.1 Decay in the Flow of Information

An important result of our model is that the degree of informativeness of information decreases as

it flows from one link to another. First, the informativeness of a directed link from agent i to agent

j does not exceed the informativeness of agent j ’s own informative signal when both agents begin

with the same priors, pi = pj . This is very intuitive. Our model captures the presence of some

(exogenous) decay in the transmission of information, which is associated to informative messages

that do not fully disclose the private information available to the sender. Only for the extreme case in

which the informative message Îi j is such that agent i fully learns the signal that agent j observes,

there is no loss of information through the directed link and agent i obtains the same amount of

information about Ú using the link Ñi j as agent j does using directly his informative signal Ðj . Sec-

ondly, with the same logic, decay in the transmission of information also follows in the case where

information is conveyed by indirectly transmitted messages, provided that the two agents connected

through the corresponding path share the same priors. The following lemma provides these intuitive

results in terms of the power measure.

Lemma 1 (Decay in the Transmission of Information). (a) Consider a directed link in social net-

work Ñi j ∈ Ñ , and suppose that agents i and j have the same priors p. Then, �(Ñi j ) ≤ �(Ðj ).

Moreover, �(Ñi j ) = �(Ðj ) if and only if the informative message Îi j associated with the directed link

Ñi j is such that agent i fully learns the signals observed by agent j from the external source associ-

ated with Ðj . (b) Consider a directed path in a social network Õi j = (Ñik ,Ñkj ) ∈ Èi j (Ñ ). Suppose that

agents i and j have the same priors p. Then, �(Õi j ) ≤ �(Ñkj ). Moreover, �(Õi j ) = �(Ñkj ) if and only

if the informative message Îik associated with the directed link Ñik is such that agent i fully learns

the messages received by agent k from agent j .

For the case of different priors, the insights provided by Lemma 1 (a) continue to hold if the

result is rephrased as follows. Suppose that, as an alternative to his private signal Ðj , agent j

places himself in agent i ’s position and uses the directed link Ñi j to update his beliefs about the

parameter. Then, the information about Ú that agent j receives through this directed link Ñi j is less

precise than the information that he would obtain using directly his signal Ðj . This reinterpretation

of the result can be verified directly from the proof of the lemma. The insights provided by Lemma 1

(b) also continue to hold under the analogous restatement of the result. Nevertheless, if two agents

i and j have different priors and we simply ask about the relation between �(Ñi j ) and �(Ðj ), then

it could be the case that �(Ñi j ) > �(Ðj ). This is due to the role that the agents’ priors have on the

19



informativeness of signals and links.

It can be verified that, for any agent i ∈ N, �(Ði ) = H(pi ) − Eæi
[H(qs

i )] so that �(Ði ) ≤ H(pi ).

Thus, �(Ði ) = H(pi ) if and only if the average entropy of agent i ’s posteriors (obtained only from his

private source) vanishes. In other words, �(Ði ) = H(pi ) whenever agent i obtains full information

about the parameter from his private signal. Suppose that all the agents in the society begin with

some common priors p. Then, note that for an agent i to obtain full information about the parameter

from a directed link to another agent j , it must be the case that (a) agent i obtains full information

about agent j ’s informative signal (i.e., �(Ñi j ) = �(Ðj )) and (b) agent j obtains full information about

the parameter from his own informative signal (i.e., �(Ðj ) = H(p)). Therefore, from the result in

Lemma 1, we observe that �(Ñi j ) ≤ H(p) for each i , j ∈ N. For the particular case of a finite

parameter space, it is well known that the entropy of any distribution is bounded.13 With common

priors, this result leads to the implication that, for L < ∞, H(p) constitutes an upper bound on the

degree of informativeness about Ú that any agent in the society can obtain, regardless of the network

structure.14

3.2 Characterizing Limiting Beliefs and Consensus

For an agent i and a parameter value Ú, we define the function G i :Ê→� as

G i (Ú) := Eæi

[
logæÚ

i

]
=

¼
S

æi (s) logæ
Ú
i (s). (7)

The value G i (Ú) is always negative and describes the (average) likelihood that the informative signal

Ði (that is, through agent i ’s external source) assigns to Ú being the true parameter value. Let

Êi ⊆Ê be the set specified as Êi := argmaxÚ∈Ê G i (Ú). To account for the information that an agent

i receives from another agent j , we define the function Fi j :Ê→� as

Fi j (Ú) := Eè̂i j

[
log è̂Ú

i j

]
=

¼
M

è̂i j (mi j ) log è̂
Ú
i j (mi j ). (8)

The value Fi j (Ú) is always negative and describes the (average) likelihood that the most informative

directed path from agent i to agent j , Õ̂i j , assigns to Ú being the true parameter value. For an agent

i , we then specify the set Ê∗i ⊆Ê as Ê∗i := argmaxÚ∈Ê
{
G i (Ú) +

´
j∈Ni

Fi j (Ú)
}
.

The next theorem shows that the convergence of an agent’s posteriors is determined by the

aggregation of likelihoods that his external source and all his directed paths in the network place on

the various parameter values.

13A central result of information theory establishes for our model that H(p) ≤ logL for each p ∈ É(Ê).
14In general, the relative entropy between two distributions need not be bounded.
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Theorem 1. Consider a social network Ñ and suppose that Assumption 1 holds. Then, for each

sequence of histories {hi t}∞t=1, agent i ’s limiting beliefs satisfy:

(i) limt→∞Þi (Ú|hi t) = 0 for each Ú <Ê∗i ;

(ii) if Ê∗i is singleton so that Ê∗i = {Ú∗} for some Ú∗ ∈Ê, then limt→∞Þi (Ú∗|hi t) = 1;

(iii) if Ê∗i is not singleton, then limt→∞Þi (Ú|hi t) = pi (Ú)/
´

Ê∗i
pi (Ú′) for each Ú ∈Ê∗i .

We obtain the interesting feature that the various influences on a given agent’s beliefs of his ex-

ternal information source and of the opinions that he receives from others are additively aggregated

to determine his limiting beliefs. We then naturally interpret the parameter values in each Ê∗i as the

ones which are favored in the long-run by both agent i ’s private source and the information that he

receives from others through his connections in the network.

Consider now the extreme case of our model which describes a society where the agents are

completely isolated and no agent receives any information whatsoever from any other agent. In

particular, this situation is obtained in our model if each informative message Îi j is such that mes-

sages do not depend on observed signals, i.e., ãs
i j (m) = ã i j (m) for each s ∈ S. If this is the case,

then it follows from the expression in (5) that ás
Õi j
(m) = áÕi j

(m) for any directed path Õi j so that

èi j [Õi j ](m) = èÚ
i j [Õi j ](m) = áÕi j

(m). As a consequence, Fi j (Ú) = −H(è̂i j ) for each pair of different

agents in the society. Since each Fi j does not depend on Ú in this extreme case, we have Êi = Ê∗i

for each agent i ∈ N. Then, using the results of Theorem 1 above, we obtain the intuitive insight that

an agent i ’s limiting beliefs are governed only by his external information source, Ði .15 We naturally

interpret each Êi as the set of parameter values which agent i favors in the long-run due only to his

own private learning, in the case of complete isolation.

It is convenient to consider this extreme case in the absence of communication as a reference

situation in order to describe our results on consensus and correct limiting beliefs. We will refer to

this case as the complete isolation case. Yet, in our model, we do actually allow for communication.

Starting from the complete isolation case, we then study how some agents influence the evolution of

others’ beliefs when we allow for communication between them according to their connections in the

network. From the results in Theorem 1, we observe that this question can be analyzed by studying

the relation between the network structure Ñ and the differences existing between each Êi and Ê∗i .

As a convenient step to explore the achievement of a consensus in the society, we would like

to study the conditions on the network structure under which some agents are able to influence

others’ opinions in a way such that all of them end up with the same opinions about which parameter

values are the most likely ones. Specifically, we wish to identify the features of the network which,

15Notice that this extreme case can be alternatively obtained if we simply exclude the possibility of network connections
in our model.
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starting from a reference situation Êi , Êj , induces Ê∗i = Ê∗j , with the additional requirement that

Ê∗j =Êj . The interpretation of this result is that the agents j are able to influence agents i ’s opinions

so that all them put positive probability in the long-run to the same parameter values that agents

j considered with positive probability based solely on their external sources, that is, the parameter

values in Êj . From the results provided by Theorem 1, we see that Fi j (Ú) gives us a convenient and

intuitive measure of the extent to which agent j is able to influence agent i to believe that Ú is the

true parameter value.

Definition 7. Given a social network Ñ , and two distinct agents i , j ∈ N such that Êi , Êj , we say

that agent j influences agent i if Ê∗i =Ê∗j =Êj .

In the definition above, for an agent to influence another, we require that he must not be in turn

influenced by other agents. Also, from the results of Theorem 1, we note that if the sets Ê∗i and Ê∗j

satisfying Ê∗i =Ê∗j are not singleton and agents i and j begin with different priors, then their limiting

beliefs differ. In this case, agents i and j do agree on the set of parameter values that have positive

probability of occurrence. However, each Ê∗i is generically singleton because non-singleton sets Ê∗i

are not robust to small perturbations of the network.16

The following example illustrates (a) how limiting beliefs are obtained for the complete isolation

case and (b) how we measure the intensity with which an agent influences the evolution of others’

beliefs in a way such that a consensus is finally achieved in the society.

Example 1. Consider a set of n = 4 agents who care about two possible parameter values, i.e.,

Ê = {Ú1,Ú2}. The agents are connected through a social network Ñ = {Ñ13,Ñ21,Ñ24,Ñ32,Ñ43},

which is depicted in Figure 1.

1

2

4

3

Ñ13Ñ21

Ñ24

Ñ32

Ñ43

FIGURE 1

The agents begin with the (common) priors p(Ú1) = p(Ú2) = 1/2, so that H(p) = − log(1/2). The

16The set of networks for which some Ê∗i is not singleton has Lebesgue measure zero in the set of all possible networks.
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agents’ private signals are specified as: (agent 1) æÚ1
1 (s1) = 1/6 and æÚ2

1 (s1) = 1/2; (agent 2)

æÚ1
2 (s1) = 1/3 and æÚ2

2 (s1) = 2/3; (agent 3) æÚ1
3 (s1) = 2/5 and æÚ2

3 (s1) = 9/10; (agent 4) æÚ1
4 (s1) =

2/3 and æÚ2
4 (s1) = 1/3. With this information, we can compute: (agent 1) G1(Ú1) = −0.7188 and

G1(Ú2) = −0.6931 so that Ê1 = {Ú2}; (agent 2) G2(Ú1) = −0.752 and G2(Ú2) = −0.752 so that

Ê2 = {Ú1,Ú2}; (agent 3) G3(Ú1) = −0.7744 and G3(Ú2) = −0.8744 so that Ê3 = {Ú1}; (agent 4)

G4(Ú1) = −0.752 and G4(Ú2) = −0.752 so that Ê4 = {Ú1,Ú2}. Therefore, when the agents use only

their external information sources, there is some discrepancy in their limiting beliefs. In particular,

agents 2 and 4 end up with their initial priors, agent 1 favors the parameter value Ú2, and agent 3

favors the parameter value Ú1.

To describe the links of the directed network, we specify the corresponding informative messages

as: (link 13) ãs1
13(m1) = 1 and ãs2

13(m1) = 0; (link 21) ãs1
21(m1) = 4/5 and ãs2

21(m1) = 1/5; (link 24)

ãs1
24(m1) = 1/4 and ãs2

24(m1) = 0; (link 32) ãs1
32(m1) = 1/3 and ãs2

32(m1) = 2/3; (link 43) ãs1
43(m1) =

9/10 and ãs2
43(m1) = 1/10. With this information, we can obtain the associated distributions è̂Ú

i j ∈

É({m1,m2}), for Ú ∈ {Ú1,Ú2}. Observe that the network in Figure 1 is connected so that each agent

can listen to the opinions of each other agent through some directed path. Also, some agents are

connected through several paths. In particular, agent 2 can listen to agent 3 through the paths

Õ23 = (Ñ21,Ñ13) and Õ′23 = (Ñ24,Ñ43). By computing the power of each path, we pick the paths

which transmit the highest amount of information.

For the directed links, we obtain: (link 13) F13(Ú1) = −0.7744 and F13(Ú2) = −0.8744; (link 21)

F21(Ú1) = −0.6956 and F21(Ú2) = −0.6931; (link 24) F24(Ú1) = −0.3835 and F24(Ú2) = −0.3867;

(link 32) F32(Ú1) = −0.6993 and F32(Ú2) = −0.6993; (link 43) F43(Ú1) = −0.7448 and F43(Ú2) =

−0.7747.

For the directed paths which transmit the highest amount of information, we obtain: (path 12)

F12(Ú1) = −0.6993 and F12(Ú2) = −0.6993; (path 14) F14(Ú1) = −0.662 and F14(Ú2) = −0.662;

(path 23) F23(Ú1) = −0.7221 and F23(Ú2) = −0.7299; (path 31) F31(Ú1) = −0.6932 and F31(Ú2) =

−0.6931; (path 34) F34(Ú1) = −0.662 and F34(Ú2) = −0.662; (path 41) F41(Ú1) = −0.6931 and

F41(Ú2) = −0.6931; (path 42) F42(Ú1) = −0.6971 and F42(Ú2) = −0.6971.

We observe that, for each agent i , 3, the value of Fi3(Ú1) is higher than the value of Fi3(Ú2).

This indicates that, through communication, agents place a relatively high intensity on the parameter

value that agent 3 favors in the complete isolation case. Then, we analyze whether agent 3 can be

an influential agent in this society. This turns out to be the case. By computing the corresponding

values of G i (Ú) +
´

j,i Fi j (Ú), for each i = 1, . . . ,4 and each Ú ∈ {Ú1,Ú2}, using the values above, we

obtain Ê∗i = {Ú1} for each i = 1, . . . ,4. Thus, the society achieves a consensus in which each agent

believes in the long-run with probability one that Ú1 is the true parameter value.
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Recall that the value G i (Ú) describes the intensity with which agent i ’s source induces him to

believe in the long-run that Ú is the true parameter value, and the value Fi j (Ú) describes the intensity

with which agent j induces agent i to believe that Ú is the true parameter value. Then, it is natural

that the achievement of a consensus in a society can be analyzed by studying the likelihood functions

G i and Fi j for j ∈ Ni . This can be done using directly the results of Theorem 1, which is the approach

followed in Example 1 above.

A complementary way to study how influential are some agents in a network and the achievement

of a consensus would involve to use the power of the paths in the network. We next provide two

necessary and sufficient conditions, in terms of the power of the paths of the network, under which

an agent is able to influence another agent. For an agent j to influence another agent i , it would be

natural, on the one hand, to require that the informativeness of the (most informative) path from i to

j be sufficiently high. On the other hand, it would be also natural to require that the informativeness

of the (most informative) path from agent j to any other agent in the society be sufficiently low in

order to prevent j from being influenced. This turns out to be the case, and such conditions are

stated formally in Theorem 2 below. Other intuitive message of Theorem 2 is that some j is more

likely to influence another agent i when agent j ’s private learning places high intensity on some

parameter values. This can be interpreted as agent j being very convinced of his opinion about the

true parameter values due to his background or personal analysis of the features of the parameter.

Such an agent j can be viewed as a “self-confident” agent.

Theorem 2. Consider a social network Ñ and two different agents i , j ∈ N such that Êi , Êj .

Suppose that Assumption 2 holds, then agent j influences agent i if and only if Ñ satisfies the

following conditions:

(i) for agents i and j :

�(Õ̂i j ) >
[
G i (Úi )−G i (Új )

]
+max

Ú<Êj

¼
h∈Ni

[
Fih(Ú)− Fih(Új )

]
+H(pi )− Eè̂i j

[
H(qm

i j [Õ̂i j ])
]
, (7a)

for any Úi ∈Êi and any Új ∈Êj .

(ii) for agent j :

max
k∈Nj

{
�(Õ̂jk) + Eè̂jk

[
H(qm

jk[Õ̂jk])
]}

< G j (Új ) +
¼
h∈Nj

Fjh(Új )−max
Ú<Êj

[
G j (Ú) +

¼
h∈Nj

Fjh(Ú)
]
+H(pj ),

(7b)

for any Új ∈Êj .

The conditions provided by Theorem 2 are intuitive. Condition (i) identifies a lower bound on

the level of informativeness of the (most informative) directed path from agent i to agent j under
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which j is able to affect i ’s beliefs in a way such that i ends up favoring in the long-run the same

parameter values that j favors in the complete isolation case, i.e., those parameter values in Êj . On

the other hand, condition (ii) identifies an upper bound on the level of informativeness of the (most

informative) directed path from agent j to any other agent in the society, which characterizes the

situation where j continues to believe in the long-run that his most-favored parameter values in the

complete isolation case, Êj , continue to be the most likely ones when he listens to others’ opinions.

From inequality (7a) above, we observe that the required lower bound on �(Õ̂i j ) increases with

the difference G i (Úi )−G i (Új ). Intuitively, it is easer for us to influence some agent when the intensity

that he puts on the parameter values that he considers the most likely ones does not differ much

from the intensity that he puts on the values that we consider to be the most likely ones.

Inequality (7a) also states that the required lower bound on �(Õ̂i j ) decreases with each Fih(Új ),

h ∈ Ni , which conveys the intuition that it is easer for us to influence some agent when the informative

messages that he receives place a high intensity on the parameters value that we consider to be

the most likely ones. Furthermore, such a lower bound increases with maxÚ<Êj

´
h∈Ni

Fih(Ú), which

can be interpreted as a measure of the highest intensity that the informative messages received by

agent i from the rest of the society places on a parameter value other than the ones favored by agent

j . Then, we obtain that it is easer for agent j to influence agent i when the informative messages

that i receives do not place a large intensity on parameter values different from those in Êj .

Finally, inequality (7a) also states that the required lower bound on �(Õ̂i j ) increases with the

entropy H(pi ) and decreases with the average entropy Eè̂i j
[H(qm

i j [Õ̂i j ])]. Therefore, for agent j to

influence agent i , we need higher values of �(Õ̂i j ) when agent i’s priors are very uncertain ex-ante17

and when agent i ’s posteriors, based solely on the information that he receives from agent j , have

in average little uncertainty.18

On the other hand, from inequality (7b), we observe that high values of the informativeness of

agent j ’s path to another agent k in the society are compatible with j not being influenced by k

when: (a) j ’s private source and/or the opinions that he receives from k put a high intensity on the

parameter values that he considers the most likely ones in the complete isolation case (i.e., high

values of G j (Új ) and/or of Fjh(Új )), (b) j ’s private source and/or the opinions that he receives from

other agents h ∈ Ni do not place a high intensity on parameter values different from the ones that he

favors in the complete isolation case (i.e., low values of maxÚ<Êj
{G j (Ú)+

´
h∈Nj

Fjk(Ú)}), (c) j ’s priors

are very uncertain ex-ante (i.e., high values of H(pj )), and (d) the ex-ante uncertainty in average

of j ’s posteriors, conditioned on the messages that he receives from k, is low (i.e., low values of

17Higher values of H(pi ) are associated with priors which are close to the uniform case pi (Ú) = 1/L for each Ú ∈Ê.
18Higher values of Eè̂i j

[H(qmi j [Õ̂i j ])] are associated with posteriors which put large probabilities on a few parameter

values.
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Eè̂i j
[H(qm

i j [Õ̂i j ])]).

The conditions identified in Theorem 2 above have neat interpretations in terms of some mea-

sures of informativeness which have a long tradition in information theory. Moreover, if we know the

set of primitives Ï (Ñ ), then we can compute the entropy-based measures that appear in conditions

(7a) and (7b). In this case, by using Theorem 2, we can determine with full precision whether an

agent is able to influence another or not.

Example 2. Consider again the social network analyzed in Example 1. Figure 2 depicts the power

of each directed link in the network. The power measures �(Ñi j ) below are computed using the set

of primitives described in Example 1.

1

2

4

3

0.14840.021

0.0081

0.0062

0.0882

FIGURE 2

Recall that, in the complete isolation case agents 2, 3, and 4 favor in the long-run parameter

value Ú1 but, unlike agent 3, agents 2 and 4 consider that parameter value Ú2 has also some

positive probability of occurrence. Based only on their external sources, the discrepancy of opinions

is relatively higher between agents 1 and 3. Agent 1 favors Ú2 with probability one while agent 3

favors Ú1 with probability one. The result obtained in Example 1 that agent 3 influences the rest of the

society so as to achieve a consensus is not surprising now if we note the communication intensities

described in Figure 2. We observe that the intensity with which agent 1 listens to agent 3’s opinions

is the highest in the society (0.1484). Also, agent 3 listens to the others’ opinions exclusively through

his link with agent 2, and the power of this link is the lowest in the society (0.0062). In addition, we

obtain �(Õ̂23) = 0.0474 while �(Ñ21) = 0.021. In other words, through agent 1, agent 2 pays more

attention to the opinions of agent 3 than to the opinions of agent 1 himself. On the other hand,

using the result in Lemma 1, we know that �(Õ̂41) < 0.021 so that, given that �(Ñ43) = 0.0882, we

observe that agent 4 also pays more attention to the opinions of agent 3 than to the opinions of agent

1. In short, using the power measure, we observe that agent 3 is a good candidate to influence the

opinions of the rest of the society. Clearly, he is the agent in the best position, according to the

directed links of the network and to their intensities, to do so.
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Then, we examine whether condition (7a) of Theorem 2 holds for for the directed link Ñ13 or, in

other words, whether agent 3 induces agent 1’s limiting beliefs to put probability one on parameter

value Ú1. Recall from Example 1 that H(p) = − log(1/2) = 0.6931 Also, from the computations of

Example 1, we observe that

G1(Ú2)−G1(Ú1) = 0.0257

and

F12(Ú2)− F12(Ú1) = 0, F13(Ú2)− F13(Ú1) = −0.1, and F14(Ú2)− F14(Ú1) = 0.

Thus, to verify whether whether condition (7a) holds for the directed link Ñ13, we only need to

compute the expected entropy Eè13
[H(qm

13)]. Using the informative messages specified in Exam-

ple 1, we compute: qm1
13 (Ú1) = 4/13 and qm2

13 (Ú1) = 6/7. With these posteriors, we easily obtain

Eè13
[H(qm

13)] = 0.5447. Then, according to condition (7a), for agent 3 to influence agent 1, we need

that the intensity of the directed link Ñ13 be above the bound

0.0257−0.1+0.6931−0.5447 = 0.0471.

This intensity is clearly exceeded in our example since we have �(Ñ13) = 0.1484.

Now, we turn to examine whether condition (7b) holds for agent 3 so that he is not influenced by

any of the three other agents. First, from the computations of Example 1, we observe that

G3(Ú1) +
¼
k,3

F3k(Ú1)−
[
G3(Ú2) +

¼
k,3

F3k(Ú2)
]
+H(p) = 0.7932. (9)

Second, we can easily compute

Eè̂31
[H(qm

31[Õ̂31])] = 0.6909, Eè32
[H(qm

32)] = 0.6869, and Eè̂34
[H(qm

34[Õ̂34])] = 0.6002.

We, therefore, obtain

�(Ñ32) + Eè32
[H(qm

32)] = 0.0062+0.6869 = 0.6932.

Furthermore, by using the result in Lemma 1, we know that

�(Õ̂31) + Eè̂31
[H(qm

31[Õ̂31])] < 0.021+0.6909 = 0.7119, and

�(Õ̂34) + Eè̂34
[H(qm

34[Õ̂34])] < 0.0081+0.6002 = 0.6083.

Since maxk,3
{
�(Õ̂3k) + Eè̂3k

[H(qm
3k[Õ̂3k])]

}
is less than 0.7119, which exceeds not the required

value 0.7932, identified in (9) above, we obtain that condition (7b) holds for agent 3.

In this example, one can analogously analyze the conditions in Theorem 2 for the most informa-

tive paths Õ̂23 and Õ̂43 to conclude that these conditions are satisfied in a way such that agent 3

influences agents 2 and 4 as well, and a consensus is achieved.
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At this point we note the implication that, with heterogenous priors, the achievement of a consen-

sus in the society is guaranteed by the existence of a set of agents N ⊂ N such that (a) each agent

j ∈ N favors some given (common) parameter value Êj = {Ú∗} in the complete isolation case and (b)

the agents in N influence the rest of agents in the society so that all the agents end up believing that

the parameter value Ú∗ is the true one.

Corollary 1. Consider a given social network Ñ . A consensus is attained in the society if there

exists a set of agents N ⊂ N such that (i) for each j ∈ N, we have Êj = {Ú∗} for some Ú∗ ∈ Ê, and

(ii) for each i ∈ N \N there is some agent j ∈ N such that agent j influences agent i .

Following the related literature, if such set of agents N exists, then we refer to it as a set of

prominent agents.

3.3 Correct Limiting Beliefs and Influence of Prominent Agents

Correct limiting beliefs refer in our model to the limiting beliefs of the external observer. Recall that

we assume that the external observer has access to the private sources available to all agents in

the society, Ði , i ∈ N, but has no access to the information that flows through the links of the social

network. The observer’s posteriors constitute an aggregate of the information possessed by the

agents. More importantly, they become an arbitrarily accurate estimate of the true parameter value

as the number of agents in the society tends to infinity.

The next proposition provides a sufficient condition on the levels of informativeness of the links of

the network under which correct limiting beliefs are attained in the society. Recall that the achieve-

ment of a consensus in the society is a prerequisite to evaluate whether correct beliefs are attained.

Proposition 1. Consider a directed network �(Ñ ) and suppose that a consensus is achieved in

the society in a way such that, for some Ú∗ ∈ Ê, we have Ê∗i = {Ú∗} for each i ∈ N. If the following

condition ¼
i∈N

¼
j∈Ni

[
Fi j (Ú

∗)− Fi j (Ú)
]
< 0,

is satisfied for each Ú ∈Ê \ {Ú∗}, then the social network �(Ñ ) attains correct limiting beliefs.

The sufficient condition identified in Proposition 1 is intuitive. Suppose that the aggregation of

the pieces of information obtained from the private sources of all the agents leads one to believe

in the long-run that a given parameter value Ú∗ is the true one. Then, the condition above imposes

some restrictions on the influence of prominent agents. It requires that there is no agent whose

influence on others be such that some agents’ limiting posteriors favor alternative parameter values

Ú ∈Ê \ {Ú∗}.
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The message conveyed by the result of Proposition 1 above is reminiscent of the main results

obtained by Golub and Jackson (2010) in their work without Bayesian updating (Propositions 2

and 3). Although they use a notion of correct beliefs that differs slightly from ours,19 correctness

of beliefs requires in their model that the influence of prominent agents vanish as the size of the

society grows. In our setting, as well as in theirs, a disproportionate popularity by some agent(s) is

the crucial obstacle to correct limiting beliefs.

We observe that the presence of prominent agents is desirable to achieve consensus. However,

to attain correct beliefs, the influence of the prominent agents must not be too high so as to alter the

agents’ beliefs in a way such that they end up favoring parameter values different from the ones that

one would favored by aggregating the agents’ sources of information.

Yet, the fact that the condition stated in Proposition 1 is only sufficient is illustrated in the following

example

Example 3. Consider again the social network described in Example 1. Recall that this society

achieves a consensus in which all the agents’ beliefs converge to a distribution that puts probability

one on the parameter value Ú1. This consensus was propitiated by the fact that agent 3 is able to

influence the rest of agents in the society. Using the computations of the functions Fi j provided in

Example 1, it is easy to verify that

4¼
i=1

¼
j,i

[
Fi j (Ú1)− Fi j (Ú2)

]
= [−0.7744+0.8744] + [−0.6956+0.6931]

+ [−0.7221+0.7299] + [−0.3835+0.3867] + [−0.6932+0.6931]

= 0.1305 > 0,

so that the sufficient condition of Proposition 1 is not satisfied. Nevertheless, we can check whether

the consensus beliefs still coincide can with the limiting beliefs of the external observer who aggre-

gates the information transmitted by all external sources. Observe that, from the result in Theorem

1, the parameter values that are favored in the long-run by the external observer are those in the

set argmaxÊ
´

i∈N G i (Ú). Then, using the computations of the functions G i provided in Example 1,

we obtain
´4

i=1G i (Ú1) = −2.9972 and
´4

i=1G i (Ú1) = −3.0719 so that, for our social network, we

have limt→∞Þob(Ú1) = 1. Thus, although the sufficient condition in Proposition 1 is not satisfied, the

influence of agent 3 does not interfere with the limiting beliefs that are obtained by aggregating the

external sources, and correct limiting beliefs are attained in this social network.

19Their definition of belief correctness also requires that some external observer aggregates the pieces of information
initially held by the agents.
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4 Concluding Comments

Both our focus on first-order beliefs and our notion of belief correctness are appealing when one con-

siders societies large enough. For small societies, the use of a definition of belief correctness based

on conditioning posteriors on a given parameter value would deliver the message that, provided that

the agents are allowed to use higher-order beliefs, they always learn the truth because both signals

and messages are independent over time in our model. This implication would follow rather directly

from the main result of Cripps, Ely, Mailath, and Samuelson (2008). Nevertheless, for the approach

usually pursued in the learning literature, recent research (e.g., Parikh and Krasucki, 1990; Heifetz,

1996; Koessler, 2001; Steiner and Stewart, 2011) shows that the presence of communication among

the agents may in some cases preclude common learning of the parameter. In particular, Cripps,

Ely, Mailath, and Samuelson (2013) show that common learning is precluded when the messages

that the agents receive are correlated across time. Analyzing consensus and the evolution of correct

higher-order beliefs for small societies when messages follow time dependence patterns remains an

interesting open question.

An interesting extension of the model would be that of endogenizing the listening behavior. To

follow this approach, more structure should be added to the model so as to consider that the agents

pursue the maximization of a payoff that depends on the unknown parameter. Then, by charac-

terizing listening structures that are “stable,” one could obtain some insights into the formation of

communication networks in a dynamic framework of belief evolution.

Appendix

Proof of Lemma 1. (a) Consider a social network Ñ . Take two different agents i , j ∈ N and a

directed link Ñi j ∈ Ñ from agent i to agent j . To allow for alternative interpretations of the result

when priors are heterogenous, we first allow agents i and j to have different priors. Using the

definition of power of a directed link in (4), we have

�(Ñi j ) =
¼
M

èi j (m)D
(
qm
i j ||pi

)
=

¼
M

èi j (m)
¼
Ê

qm
i j (Ú) log

qm
i j (Ú)

pi (Ú)

=
¼
M

èi j (m)
¼
Ê

è̃Ú
i j (m)pi (Ú)

èi j (m)
log

è̃Ú
i j (m)

èi j (m)

=
¼
Ê

¼
M

pi (Ú)
¼
S

ãs
i j (m)æÚ

j (s)

[
æj (s)
æj [i](s)

]
log

´
S ã

s′
i j (m)æÚ

j (s
′)
[

æj (s′)
æj [i](s′)

]
´

S ã
s′
i j (m)æj (s′)

.

(10)
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Now, by applying, for each given Ú ∈ Ê and each given m ∈ M, the log-sum inequality to the

expression in (10) above, we obtain

�(Ñi j ) ≤
¼
Ê

¼
M

pi (Ú)
¼
S

ãs
i j (m)æÚ

j (s)

[
æj (s)
æj [i](s)

]
log

æÚ
j (s)

æj [i](s)
. (11)

On the other hand, using the definition of power of an informative signal in (3), we have

�(Ðj ) =
¼
S

æj (s)D
(
qs
j ||pj

)
=

¼
S

æj (s)
¼
Ê

qs
j (Ú) log

qs
j (Ú)

pj (Ú)

=
¼
S

æj (s)
¼
Ê

æÚ
j (s)pj (Ú)

æj (s)
log

æÚ
j (s)

æj (s)

=
¼
Ê

¼
S

pj (Ú)æ
Ú
j (s) log

æÚ
j (s)

æj (s)
.

(12)

Now, suppose that agents i and j have common priors, pi = pj = p. Then, æj [i] = æj so that, by

combining the inequality in (11) with the expression in (12) above, we obtain

�(Ñi j ) ≤
¼
Ê

¼
M

p(Ú)
¼
S

ãs
i j (m)æÚ

j (s) log
æÚ
j (s)

æj (s)

=
¼
Ê

¼
S

p(Ú)æÚ
j (s) log

æÚ
j (s)

æj (s)

[¼
M

ãs
i j (m)

]
=

¼
Ê

¼
S

p(Ú)æÚ
j (s) log

æÚ
j (s)

æj (s)
= �(Ðj ),

as stated.

Moreover, by combining the expressions in equations (10) and (12) for the case of common

priors, pi = pj = p, we obtain

�(Ñi j ) = �(Ðj ) +
¼
Ê

p(Ú)
¼
M

¼
S

ãs
i j (m)æÚ

j (s) log
æj (s)

´
S ã

s′
i j (m)æÚ

j (s
′)

æÚ
j (s)

´
S ã

s′
i j (m)æj (s′)

. (13)

Now, note that the informative message Îi j , associated with the directed link Ñi j , allows agent i

to learn fully the signal that agent j observes if and only if Îi j completely separates all the signal

realizations s ∈ S available to agent j . Without loss of generality, Îi j completely separates all the

signal realizations in S if and only if ã i j (ml |sl) = 1 for each l ∈ {1, . . . ,L}. In this case, for each Ú ∈Ê,

we obtain¼
M

¼
S

ãs
i j (m)æÚ

j (s) log
æj (s)

´
S ã

s′
i j (m)æÚ

j (s
′)

æÚ
j (s)

´
S ã

s′
i j (m)æj (s′)

=
L¼

l=1

æÚ
j (sl) log

æj (sl)æ
Ú
j (sl)

æÚ
j (sl)æj (sl)

= 0.
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Therefore, from the expression in (13), we obtain that the informative message Îi j allows agent i to

fully learn about the signal observed by agent j if and only if �(Ñi j ) = �(Ðj ).

(b) The proof of part (b) uses exactly the same arguments given above for part (a). The only differ-

ence is that the role played in (a) by the informative signal Ðj is now played by the directed link Ñkj .

All the formal expressions required would replicate the previous ones used in (a) upon adaptation to

the appropriate formulae. Therefore, we forego a formal statement.

Proof of Theorem 1. Consider a given social network Ñ and take an agent i ∈ N. For a history hi t,

let Ó(s;hi t) be the number of periods in which agent i has observed signal s before period t and let

Ô(m;hi t) be the number of periods in which agent i has received message m from agent j (through

the directed path which transmits the highest amount of information from j to i) before period t. Fix

a sequence of histories {hi t}∞t=1. Take a given Ú ∈Ê. Application of Bayes rule gives

Þi (Ú|hi t) =

1+ ¼
Ú′,Ú

pi (Ú′)
pi (Ú)

½
S

[
æÚ′
i (s)

æÚ
i (s)

]Ó(s;hi t)½
j,i

½
M

 è̂Ú′
i j (m)

è̂Ú
i j (m)

Ô(m;hi t)

−1

.

Since observed frequencies approximate distributions, i.e., limt→∞Ó(s;hi t) = limt→∞[tæi (s)] and

limt→∞Ô(m;hi t) = limt→∞[t è̂i j (m)], we have

lim
t→∞

Þi (Ú|hi t) =

1+ ¼
Ú′,Ú

pi (Ú′)
pi (Ú)

lim
t→∞

½
S

[
æÚ′
i (s)

æÚ
i (s)

]æi (s)½
j,i

½
M

 è̂Ú′
i j (m)

è̂Ú
i j (m)

è̂i j (m)

t
−1

.

Therefore, studying the converge of Þi (Ú|hi t) reduces to studying whether each term, for Ú′ , Ú,

½
S

[
æÚ′
i (s)

æÚ
i (s)

]æi (s)½
j,i

½
M

 è̂Ú′
i j (m)

è̂Ú
i j (m)

è̂i j (m)

exceeds or not one. By taking logs, this is equivalent to studying whether, for each Ú′ , Ú, the

expression ¼
S

æi (s) log
æÚ′
i (s)

æÚ
i (s)

+
¼
j,i

¼
M

è̂i j (m) log
è̂Ú′
i j (m)

è̂Ú
i j (m)

exceeds or not zero. Then, using the definitions of G i and of Fi j in (7) and in (8), respectively, we

obtain that:

(i) limt→∞Þi (Ú|hi t) = 0 if

G i (Ú) +
¼
j,i

Fi j (Ú) < G i (Ú
′) +

¼
j,i

Fi j (Ú
′) for some Ú′ , Ú ⇔ Ú <Ê∗i ;

(ii) limt→∞Þi (Ú|hi t) = 1 if

G i (Ú) +
¼
j,i

Fi j (Ú) > G i (Ú
′) +

¼
j,i

Fi j (Ú
′) for each Ú′ ∈Ê \ {Ú} ⇔ Ê∗i = {Ú};
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(iii)

lim
t→∞

Þi (Ú|hi t) =

1+ ¼
Ú′∈Ê∗i \{Ú}

pi (Ú′)
pi (Ú)


−1

=
pi (Ú)´

Ú′∈Ê∗i pi (Ú
′)

if Ê∗i is not singleton and Ú ∈Ê∗i .

Proof of Theorem 2. Consider a given social network Ñ , and take two different agents i , j ∈ N and

the directed path Õ̂i j ∈ Èi j [Ñ ] which conveys the highest amount of information from agent j to agent

i . Using the definition of power of a directed path in (6), we have:

�(Õ̂i j ) =
¼
M

è̂i j (m)D
(
qm
i j [Õ̂i j ] ||pi

)
=

¼
M

èi j (m)
¼
Ê

qm
i j (Ú) log

qm
i j [Õ̂i j ](Ú)

pi (Ú)

=
¼
M

è̂i j (m)
¼
Ê

è̃Ú
i j [Õ̂i j ](m)pi (Ú)

è̂i j (m)
log

qm
i j [Õ̂i j ](Ú)

pi (Ú)

=
¼
Ê

¼
M

pi (Ú)è̃
Ú
i j [Õ̂i j ](m) log

qm
i j [Õ̂i j ](Ú)

pi (Ú)

= −
¼
Ê

pi (Ú) logpi (Ú)
[¼

M

è̃Ú
i j [Õ̂i j ](m)

]
+
¼
Ê

¼
M

pi (Ú)è̃
Ú
i j [Õ̂i j ](m) logqm

i j [Õ̂i j ](Ú)

= H(pi ) +
¼
M

è̂i j (m)
¼
Ê

qm
i j [Õ̂i j ](Ú) logq

m
i j [Õ̂i j ](Ú)

= H(pi )− Eè̂i j

[
H(qm

i j [Õ̂i j ])
]
.

(14)

Using Definition 7, it follows that agent j influences agent i if and only if the two following conditions

are satisfied:

(i) Ê∗i =Ê∗j . This condition is satisfied if and only if for any Ú ∈Êj ,

G i (Ú) +
¼
h∈Ni

Fih(Ú) ≥ G i (Ú
′) +

¼
h∈Ni

Fih(Ú
′) ∀Ú′ ∈Ê.

Since we know that, for each Ú ∈ Êi , G i (Ú) ≥ G i (Ú′) for each Ú′ ∈ Ê, the above condition is equiva-

lent to require that for any Új ∈Êj and any Úi ∈Êi

G i (Új ) +
¼
h∈Ni

Fih(Új ) ≥ G i (Úi ) +
¼
h∈Ni

Fih(Ú) ∀Ú ∈Ê.

⇔ G i (Új ) +
¼
h∈Ni

Fih(Új ) > G i (Úi ) +max
Ú<Êj

¼
h∈Ni

Fih(Ú).

By adding the identity obtained in (14) to both sides of the inequality above, we obtain the following

necessary and sufficient condition for Ê∗i =Ê∗j :

�(Õ̂i j ) > G i (Úi )−G i (Új ) +max
Ú<Êj

¼
h∈Ni

Fih(Ú)−
¼
h∈Ni

Fih(Új ) +H(pi )− Eè̂i j

[
H(qm

i j [Õ̂i j ])
]
,
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which coincides with the condition stated in (7a).

(ii) Ê∗j =Êj . This condition is satisfied if and only if, for any Új ∈Êj ,

G j (Új ) +
¼
h∈Nj

Fjh(Új ) ≥ G j (Ú) +
¼
h∈Nj

Fjh(Ú) ∀Ú ∈Ê.

⇔ G j (Új ) +
¼
h∈Nj

Fjh(Új ) >max
Ú<Êj

[
G j (Ú) +

¼
h∈Nj

Fjh(Ú)
]
.

By adding the identity obtained in (14) (upon changing the agents’ subscripts to consider �(Õ̂jk)),

where k ∈ Nj , to both sides of the inequality above, we obtain the condition

�(Õ̂jk) < G j (Új ) +
¼
h∈Nj

Fjh(Új )−max
Ú<Êj

[
G j (Ú) +

¼
h∈Nj

Fjh(Ú)
]
+H(pj )− Eè̂jk

[
H(qm

jk[Õ̂ik])
]
,

for each k ∈ Nj , which, by rearranging terms, coincides with the condition stated.

Proof of Proposition 1. First, note that application of the result in Theorem 1 to the external ob-

server leads directly to the result that, for each history ht, limt→∞Þob(Ú∗|hi t) = 1 if and only if

argmaxÚ∈Ê
´

i∈N G i (Ú) is singleton with argmaxÚ∈Ê
´

i∈N G i (Ú) = {Ú∗}.

Second, suppose that at consensus is achieved in the society in a way such that, for some

Ú∗ ∈Ê, we have limt→∞Þi (Ú∗|hi t) = 1 for each history hi t, for each agent i ∈ N. Then, by using the

result in Theorem 1, it follows that, for each agent i ∈ N,

G i (Ú
∗) +

¼
j∈Ni

Fi j (Ú
∗) ≥ G i (Ú) +

¼
j∈Ni

Fi j (Ú) ∀Ú ∈Ê,

which, by summing over all agents, implies¼
i∈N

G i (Ú
∗)−

¼
i∈N

G i (Ú) ≥ −
¼
i∈N

¼
j∈Ni

[Fi j (Ú
∗)− Fi j (Ú)]. (15)

Therefore, provided that the consensus described above is achieved in the society, if¼
i∈N

¼
j∈Ni

[Fi j (Ú
∗)− Fi j (Ú)] < 0 ∀Ú ∈Ê \ {Ú∗}

holds, then the condition in (15) above implies that
´

i∈N G i (Ú∗) ≥
´

i∈N G i (Ú) for each Ú ∈ Ê, with

strict inequality if Ú , Ú∗. As a consequence, correct limiting beliefs are attained in the society.
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